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PREFACE
This work is composed of two parts. The first cetssin the application of non-linear time series
analysis techniques to the Nordic spot electricitgrket and the second in the study of the
correlation between disturbances and prices. Buoilies are performed using the data respectively
of spot prices, Total consumption and Disturbannethe Nordic Region publicly available from

www.nordpool.comand www.nordel.org In both parts we have applied, together witheoth

techniques, Recurrence Quantification Analysis (RQAat in the case of different time series
becomes Cross Recurrence Plot Analysis (CRP).

In the first part of the work, we have studied #hectricity spot prices Recurrence Plot that alow

to a new representation of data in which new messwan be applied (Determinism and
Laminarity) and they have demonstrated to be abl@listinguish between real and surrogate
(random Gaussian with the same FFT) data. Morethwsr give a new measure of volatility that

takes into account the dynamic properties and nigtthe statistical distribution of the data.

The second part studies the correlation betweectrigi¢y prices and disturbances. In this case
Cross recurrence plot allows, given two time seteeglentify a shift and a temporal window on

which both series are linearly correlated.

Keywords: Recurrence Plot, RQA, CRP, linear correlation ysial
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1. APPLICATION OF NON-LINEAR TIME SERIES ANALYSIS
TECHNIQUES TO THE NORDIC SPOT ELECTRICITY MARKET DA TA

This is a summary of the extended work containe&timozziet al 2007, Strozzet al 2008 and
partially in Erzgréaber et al., 2008. (Annexes I):1lin these two works, we have applied non-linear
time series techniques to the Nordic spot eletyriciarket data. The time series are given in two
periods, from May 1992 to December 1998 in Norwed{abne per MWh and from January 1999
to January 2007 in EUR per MWHh. First, a prelimynatudy was carried out with the aim of
characterising the time series in terms of longntenemory (R/S analysis), and tails (stable
distributions). Surrogate time series were alsoegaed to test if the original time series were
similar to a stationary Gaussian linear process.alisecond step, state space reconstruction
parameters: time delay and embedding dimension usgd to carry out the analysis of these two
series in the reconstructed state space. We apRlemdirrence Quantification Analysis (RQA),
which is based on the definition of several paramsetthat allows the quantification of the
Recurrence Plots (RP). The RQA analysis of bothetsaries and in particulaeterminism and
laminarity has shown the ability to distinguish between esal surrogate data and to measure the

financial volatility.

1.1. R/S analysis confirms long range correlationral anti-persistence

A tool for studying long-term memory and fractaldf/a time series is the Rescaled Range analysis
(R/S analysis) first introduced by Hurst (1951)hiydrology. Mandelbrot (1983) argued that R/S
analysis is a more powerful tool in detecting loagge dependence compared to more conventional
analysis like autocorrelation analysis, variancgosaand spectral analysis. In this method, one
measures how the range of cumulative deviations fittee mean of the series is changing with the
time. It has been found that, for some time seties,dependence of R/S on the number of data
points (or time) follows an empirical power law desed as(R/'S),=(R/S), n", where (R/S)is a
constantn is the time index for periods of different lengimdH is the Hurst exponenf{R/S), is

defined as

[Bj _ MaX.n Alt,n) - min]stsn Alt,n)
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whereA(t,n) is the accumulated departure of the time sei¢$rom the time average over the time

t+n

intervaln:(s) ~ A(t,n) = Z(s(i) ~(s) ).



The Hurst exponenf)s H <1, is equal to 0.5 for random walk time series, J@:5anticorrelated
series, and >0.5 for positively correlated series.

A long memory process is a process with a randompoment, where a past event has a decaying
effect on future events. The process has some nyeofigrast events, which is "forgotten” as time
moves forward. The Hurst exponent has a relatignstith the rate at which the correlation
function decays. In this work we have calculateddtiexponent for the given time series and a set
of their surrogate (random Gaussian with the safE).FAll the time series show antipersistence
i.e. H<0.5. This has already been found by several authdrs.r&sults show that the H exponent of
surrogates are slightly lower than the one ofcibreespondent real data but it is not possiblenid f

a numerical H values that separate real from sateodata. Different methods to calculated Hurst

exponent these electricity prices are applied egEber et al. (2008).

1.2. Stable distribution fitting.

Stable distributions are a class of distributiomattinclude Gaussian, Cauchy and Levy
distributions. They allow skewness and heavy tdilee general stable distribution is described by
four parameters the first two amél(0,2], an index of stability anfilJ[-1,1], a skewness parameter.
o and determine the shape of the distribution. The pasameters arg ][0,) a scale parameter
and o[](—0,0) a location parameter. There are no closed formidasdensity and distribution
function with the exception of Gaussian, Levy arali€hy.

Stable distributions have been proposed as a nfodehany types of physical and economic
systems because many large data sets exhibit he#gyand skewness. Anyway, while non-
Gaussian stable distributions are heavy tailed,tmeavy-tailed distributions are not stable. Stable
distributions have the important property of st#ilif a number of independent and identically
distributed (iid) random variable have a stabletritigtion, then a linear combination of these
variables will have the same distribution, exceptdossibly different shift and scale parameters.

A stable probability distribution is defined by tlk®urier transform of its characteristic function

#(t):

. — 1 T —itx
f(xa.B.y.0) = J plt)e ™ dt 2)
Where¢(t) is given by
#(t) = exito- |t I” (L-iBsgnt)o) 3)
and sgn(t) is just the sign of t addis given by
® = tan(m / 2) (4)

for all a excepta=1 in which case:



& =—(2/ n)log(t) (5)
The heavy tail behaviour causes the variance ofestdistribution to be infinite foa<2 (fora=2 is

Gaussian).

There is no general analytic expression for a staldtribution. There are, however four special
cases which can be analytically expressed:

a/ fora=2 the distribution becomes a Gaussian distributitth varianceo? = 2y* and mearo

b/ for a=1 andp=0 the distribution reduces to a Cauchy distributidth scale parametgrand shift
parameterd

c/ fora=1/2 andB=1 the distribution reduces to a Levy distributi@ith scale parametgrand shift
parameterd

d/ In the limit asy> 0 or asa—> 0 the distribution will approach a Dirac deltadtion 6(x—09)

In order to analyse these series we have fittedhietogram to the first normalized logarithmic

return. A typical situation in these time serieghe existence of a high number of zero values
normally in correspondence with weekends or hokddy compare the results, we have eliminated
from the original series the points where the erglearate was unchanged, i.e. the zero value. Table

6 summarizes the fitted parameters using the maxirikelihood estimation (Nolan, 1997 and
1999).

Table 1. Nord Pool data fitted parameters using BO®R (Nolan, 1999).

Data set a B y 5

KRN 0.412 -0.365 | 0.035 -0.00018
KRN(0) 1.116 0.127 0.242 -0.0514
EUR 1.308 0.164 0.268 -0.068
EUR(0) 1.315 0.173 0.272 -0.069

Due to the high amount of zero in the price in Negvan Krone, it is difficult to find a good fit fo
this time series.

Afterwards, the surrogate time series for the NBabl in EUR have been compared with the
original time series. We have found that they hay@obability distribution function more similar
to a Gaussiano(near 2) in comparison with original data €1.308) and they hayg closer to 0

than original data which mean that their probapfliistribution functions are less skew.

1.3. Recurrence Quantification Analysis

Eckmannet al. (1987) introduced a new graphical tool, whichytlecalled a recurrence plot (RP).
The recurrence plot is based on the computatioimefdistance matrix between the reconstructed
points in the phase space, se{s(t), s(t-1), S(t-27),...s(t+ (de-1) 73,
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This produces an array of distances in a NxN sqgoteix, D, being N the number of points under
study. Once this distance matrix is calculatedheoriginal paper of Eckmaretal. (1987), it was
displayed by darkening the pixel located at spe¢if]) coordinates which corresponds to a distance
value between i and j lower than a predetermingdfizui.e. a ball of radiuss centered as.
Requiring g = &, the plot is symmetric and with a darkened maigdnal correspondent to the
identity line. The darkened points individuate tieeurrences of the dynamical systems and the
recurrent plot provides insight into periodic stures and clustering properties that are not appare
in the original time series (Eckmaenal.,1987).

To extend the original concept and made it morentijizive Zbilut and Webber (1992) developed
a methodology called Recurrence Quantification ysial (RQA) (Webber and Zbilut, 1994). For
an excellent overview the reader is referred towaret al. (2007). As a result, they defined
several measures of complexity to quantify the bs@dle structures in RP. These measures are
based on the recurrence point density and the d@&gnd vertical line structures of the RP. A
computation of these measures in small windows-(satrices) of the RP moving along the main
diagonal yields the time dependent behaviour ofdheariables. Some studies based on RQA
measures show that they are able to identify bdfima points, especially chaos-order transitions
(Trulla et al., 1996). Thevertical structures in the RP are related to intemcy and laminar states:
those measures quantifying the vertical structeresle to detect chaos-chaos transitions (Marwan
et al., 2002). In these work we will use the measurthefpercentage of diagonal and vertical lines
(determinism and laminarity respectively).

To check if RQA measures are able to distinguistiéen real data and their surrogates (linear
Gaussian processes) we calculated all of them ddin. bUsing %determinism, %laminarity we
obtain values which are always smaller for surregkdta in comparison with original data sets. The
fact that these two parameters are able to disshgbetween the original time series and the
surrogate time series points toward the explanatanthe original series have more diagonal and
vertical lines, and therefore their state remaiarrgg at the same place longer in time more often
than for its surrogates linear Gaussian processtlaaidthey posses a different decaying of the

autocorrelation function.

1.4.Determinism and Laminarity as volatility measures.
We have applied Recurrence Quantification AnalfRi®A) to data sets taken from the Nordic spot
electricity market (Strozzgt al., 2008) Our main interest was in trying to corteltheir volatility

with variables obtained from the quantificationreturrence plots (RP). For this reason we have



based our analysis on known historical eventsetr@ution of the Nord Pool market and climatic

factors, i.e. dry and wet years, and we have coetpaeveral dispersion measures with RQA
measures in correspondence of these events. THgsianauggests that two RQA measures:
determinism (DET) and laminarity (LAM) can be usesla measure of the inverse of the volatility.
The main advantage of using DET and LAM is thaséhmeasures provide also information about
the underlying dynamics. This fact is shown usihgfed and linear Gaussian surrogates of the
real time series.

Several measures of volatility has been usedenaliire (Simonsen, 2003, Hsu and Murray, 2007,

Figueiredo, et al. 2005), between them we haveidered:

V, =SD(s) (7)
V, =3D(s —s4) (8)
V; = SD((S[ _St—l)/st—l) 9)

where S, and SD refer to the time series values and thedatd deviation, respectively. To

calculate the standard deviation the following fatanwas used:
_ 1 N 2
D(s) = 2.(s—s) (10)
n _1 i=1

with §=£Z§ and n is the number of points considered.Mn the argument of SD is an
i=1

approximation ofIn(s /s_ )which is often used to measure financial volatilitn order to
compare these quantities with RQA measures we ingeeted and normalized them as follows:
IV, =1/V.,i =1,..,3 (11)

IV, —min(1V;)

= : (12)
max(V,) —min(1V;)

We have assumed that an increase of the dispensegasure corresponds to a decrease of RQA
measures that account for the predictability ofuthderlying dynamical system.

As a first step, we have compared the RQA measfrédse original time series with two types of
surrogate series: shuffled and linear Gaussian thithsame FFT. We have observed that RQA
measures do not characterize the probability tistion of the data, because the shuffled and the
real data have the same mean and variance, batatiffvalues of RQA measures. In addition, we
have found that two RQA measures: DEbdéterminism) and LAM @blaminarity) are able to
distinguish between real and linear Gaussian sateogith 95% of confidence. For this reason and
because of the hypothesis that high volatility caply small DET and LAM, we have compared
them with the inverse of the normalized dispersie@asures given by Eq. 12 on a one month
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moving window translated of one month. We have fbtivat these measures are correlated with the
inverse of dispersion measures that are used taaeahe volatility of financial time series.

We have found a qualitative agreement from the tpah view of high and low values
corresponding to wet and dry periods and a gemalease of the measures with the entrance of
new countries in the Nord Pool. The linear coriefatbetween these measures decreases for the
linear Gaussian surrogates as well as the agreesiténhistorical events.

To see if the RQA measures have some advantagesmmparison with the other dispersion
measures (Eq. 12), we have observed that DET arM &Aow more pronounced jumps between
the periods analyzed. This behaviour is lost whenapply the same treatment to surrogate data

sets

2. CORRELATION ANALYSIS BETWEEN FAULTS IN THE ELECT RICITY GRID AND
ELECTRICITY PRICES IN THE NORDIC REGION

In this Section we have summarized the work coethin Strozzi and Zaldivar (2009), see Annex
V.

The deregulation has caused considerable changéseimlectricity market. On one hand the
increase in the competition has modified the pricdatility; on the other hand this competition has
stressed electricity grids with the variation of ffow in the physical network. Thus it is natut@l
assume that some correlations between electricibep and disturbances in the electricity grid
should exist. The correlations, once detected,hedp in the prevention of the disturbances acting
on the electricity price or, at least, in the maragnt of the contingency.

In Strozzi and Zaldivar (2009) we have analyzedsiibs correlations between electricity prices
and disturbances using the data of the Nordic rtégt market. We have used the monthly spot
prices, disturbances and consumption from the Inéggnof January 2000 until the end of
December 2006 in the Nordic region, i.e. DenmanklafRd, Norway and Sweden. The preliminary
treatment of the data include the elimination o thends applying the difference operator and
subtracting the regression line. In addition, weeheonsidered the price volatility and similarlgth
volatility of disturbances and of total consumptidie questions we were interested in addressing
were the following: Are the monthly spot pricesretated with disturbances? Can we increase the
correlation by shifting the time series and canuse the evolution of one time series to anticipate
the behaviour of the other and/or to prevent advergents? Can we detect windows of correlation
and find a correspondence of the starting and gnploint with some know events? To answer the
mentioned questions we have proposed the followimethodology. First, staring from prices,

disturbances and consumption we have generated @ttime series: the detrended ones, the first

9



differences and the volatilities. Than we have toyextract relevant correlations performing the
mean (or standard deviation in the case of vdias) on different time windows shifted by
different time intervals and we have calculatedtladl correlation matrices and Cross Correlation
Function to see if a relevant linear correlatiorsear directly or after a shift of one series @spect

to the other. To see if a linear correlation exmt$/ on one portion of a time series in respect to
another one and then disappears due to some dx¢eerdt, we have applied the Cross Recurrence
Analysis that is a generalization of the Cross €lation Function. The Principal Component
Analysis is applied to understand if the set oftit® series considered contain more information
than the one contain only in Spot prices, Distudeaand consumption from which they have been

generated.

2.1. Linear correlation coefficient: correlation marix.

The correlation coefficient matrix represents th@nmalized measure of the strength of linear
relationship between variables. To measure thefgignce of each correlation we have applied the
t-test. In every correlation matriR we have considered the correlation val&gg) higher than
0.7071 (i.e. a determination coefficiert:R0.5) with a significance level of 95% iR j) < 0.05.
EachP(i,j) value gives the probability of getting a celation as large as the observed value by
random chance, when the true correlation is zehe fesults are presented in Table 2 and 3 In
which we have underlined the correlation betwedferdint variables and in bold the correlations

values between Disturbances and prices.

Table 2. Significant linear correlations coeffidieR(i,j)) between data sets for different when
equal tosh.
w=1, sh=1

w=3 (seasonal); sh33 w=6; sh=6 w=12; 8h=1

S,Sdt (0.7317)
Sfd,Vs(0.8607)
Dfd,Vp(0.8761)
Tfd,V+(0.9896)

D,T (-0.8154)

Dfd,D(-0.8503)
Tfd, T(-0.8686)
Vp,Dfd(0.7698)

D,T(-0.8594)

Tdt,T(0.9842)
Vp,T(-0.9057)
Vp,Sdt(0.8138)
Vp,Tdt(-0.9014)

D, Tfd(0.776)
T,Dfd(0.7752)

Table 3. Significant linear correlations coeffidid{i,j) between data sets for differemtandsh=1.

w=2; sh=1 w=3 (seasonal); sh=1  w=6; sh=1 w=12; sh=1
T.D (-0.7354) T.D (-0.8057) T.D(-0.9044) T.D(-0.7807)

S, Sdt(0.7195) Tfd,Dfd(-0.8010) D.Tdt(-0.7586)
D,Ddt(0.8060)
T, Tdt(0.9904)

Vp-Sdt (0.7567)
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Since we are interested mostly in the correlatioetsveen price and disturbances we can conclude
that it exists only fow=12 andsh=12 orsh=1, particularly between the volatility of disturizes
and the mean Spot prices de-trended.

2. 2. Principal Component Analysis

Principal component analysis (PCA) is a technigseduto reduce multidimensional data sets
(Jackson, 1991, Jolliffe, 2002). It is a way tontiy patterns (linear) in data and then to comgres
them by reducing the number of dimensions withoutimloss of information. The eigenvector of
the covariance matrix are the components. The eegar with the highest eigenvalue is the
principal component of the data set. A subset of the eigenvectorelescted as basis vectors: the
more significant and the others are cancelled. listlzose eigenvalues which sum is 90% of the
sum of all eigenvalues are considered. The firstcgral component is that linear combination of
the original variables which accounts for theximum amount of variance in a single line. lthis
line of best fit through the data, and the residwlance about this line is then a minimum for the
data set. The second principal component is tima& Which is orthogonal to the first principal
component and accounts for the maximum amounteféimaining variance in the data. The first
two components therefore represent the plane affivésrough the data. The eigenvalues obtained
from Principal Components Analysis are equal tovhgance explained by each of the principal
components, in decreasing order of importance.slinemary of PCA analysis is presented in Table
4,

Table 4. Summary of PCA results.

w | sh | # points| #PC to explain at | % variance | #PC to explain at| % variance
least 50% | explained | least 90% | explained
variance variance

1 |1 |83 3 63.39 6 91.03

2 |1 |82 3 53.08 8 91.08

3 |1 |81 3 56.35 8 92.67

6 |1 |78 3 62.62 7 92.85

12 |1 |72 2 54.80 6 93.26

3 |3 |27 3 56.55 7 91.69

6 |6 |13 2 61.44 5 94.38

12 | 12 |6 2 65.63 4 96.75

In the first two columns of Table 4 there are tladues ofw andsh and, in the third, the number of
points of each time series considered in calcidaB®CA. In the fourth column the number of
principal components able to explain at least % ®f variance is listed. It seems that an hyper
plane of dimension three can fit the data. Thisosso strange since we built the twelve time serie
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starting from three of them (S, D, T), but if we @nterested in explaining at least 90% of variance
we can see that we need always more than 3 princgraponents. Sometimes even 8 principal
components are necessary i.e. the original timessand their first difference, for example, do not

contain still all the independent information.

2.3. Cross Correlation function

Cross correlation is a generalization of the catreh coefficient and a standard method of
estimating the degree to which two series are taia@ when we shift them one in respect to the
others (Orfanidis, 1996)

We have calculated the cross correlation functmmeivery window,w, and every shiftsh. The
maximum values obtained are listed in Table 5 togetvith the correlation coefficients without
delay, R(0), and the p values of the t-tesi%; is correlated with price volatility, price first

difference and price de-trended but only considewimdows of six or twelve months.

Table 5. Results from the cross correlation analysi

Time w | sh | R(0) p delay R(delay) p
series (months)

VsVp |12|1 | 0.5183 | 0.0000-6 0.8906 0.0000
VsVp 6 |1 | 0.1855| 0.1040-6 0.5959 0.0000
Sdt\p |12|1 | 0.7567 | 0.0000-3 0.8536 0.0000
SfdVp |6 |1 | -0.4273| 0.0001-8 0.7430 0.0000
SfdVp |6 |6 | -0.7778| 0.0017-1 0.8725 0.0002

The correlation function between D-Sfd and D-S whithat, even if it never reaches R-values
higher than 0.4, it has a regular oscillating lv&har in respect to the delay (Fig. 1)

12



Qoss Corelation
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Figure 1. Cross Correlation functions for Disturbeswithw = 2,sh =1.

2.4. Cross Recurrence Plot

CRP is a bivariate extension of Recurrence Plotwaas introduced to analyse the dependencies
between two different time series by comparingrtje@nt recurrence (Marwan and Kurths, 2002).
It can be considered as a generalization of theafircross-correlation function (Marwah al.
2007), infact they introduced the Line Of Syncramian (LOS) which is a particular diagonal line
in RP which local slope corresponds to the tramsédion of the time axes of the two considered
trajectories. A time shift between the trajectoreeaises a dislocation of the LOS. Hence LOS
allows finding the rescaling function between diéfiet time series. In the time window in which
LOS has a slope 1 the two time series are lineaelabed directly or after a shift of one in resgpec
of the other, this is the case in which LOS is |alréo the main diagonal of RP but not coincident.
An example of LOS obtained by the CRP of Disturleen¢D), and first differences of Total
Consumption (Tfd) is shown in Fig 2.

A disadvantage of using CRP is that in order tcambt good LOS quality, which means that
information given by LOS show real changes in tbealation properties, there is the need of a
certain minimum amount of points. In this work wavk been able to obtain good LOS quality
using only data withv= 2 andsh =1; in the other cases there were not enough ptonperform this
analysis.

To confirm the fact that LOS allows in detectingndows of higher linear correlation, we have
compared the correlation of the entire time senigls the one obtained using only the portion of the
data in which the LOS is parallel to the main di@oR _os) and with the one suggested by the
correlation function Rccr) i.e. obtained translating the entire time serfdsthe results are shown
in Table 6. Moreover, looking to Table 6, we carsetve that LOS allows identifying the time in
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which Spot Prices changes at the beginning of tigepdriod (June-July 2002) and in which the
prices increase due to the dependence from exteonates.

Table 6. Correlation coefficient for different gion of the time seriesas: not significative.R:
correlation Coefficient of the entire time seriexlavithout shift.Rccr: max correlation obtained
using Cross Correlation FunctioR, os: Correlation coefficient of the portion of the enseries
suggested by LOS.

Time Series R Rcce Rios Date correspondent to the
points considered
-Disturbaces -0.2692 | -0.2692 | 0.3979 | July O1-
-Prices (ns) May 02
-Disturbaces -0.7354 | -0.7354 | -0.8037 | Feb 00-
-Total Consumption Sept 01
-Disturbaces 0.0702 |-0.3529 | -0.3953 | Feb 00-
-Prices first differences (@ July 02
prices
-Disturbaces -0.4119 | -0.6809 | -0.7021 | Feb 00-
- Disturbaces firs June 02
differences March 00
-July 01
-Disturbaces 0.2429 | 0.6896 | 0.7455 | Feb 00-July 06
- Total Cons. first May 00-Dec 06
differences
-Disturbances volatility 0.1545 | 0.4418 |-0.2248 | Feb 00-Dec 02
—Price detrended (ns)

14
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Figure 2. Example of LOS in the CRP obtained udsfurbances (D), and first differences of
Total Consumption (Tfd).

3. CONCLUSIONS

The main conclusions of Section 1 of this repaetthe analysis of electricity spot prices in the
Nordic region are that R/S analysis confirms thang range correlation and antiperistence. Stable
distribution fitting has characterized the eledtyicspot price first difference from the statistica
point of view confirming that the distribution ifat tail” and that extreme events far from the mean
value have higher probability to occur in compamiseith a Gaussian distribution. Applying
Recurrence Quantification Analysis and in particiieo measures: DET and LAM we were able to
distinguish between real and surrogate data setsedter the same measure demonstrated to be
able to detect the time windows of higher volatiind in this way they provide a bridge between
the concept of volatility as dispersion and voigtias lack of predictability i.e. lack of deterrmmsm.

The main conclusions of Section 2 of this repogt ianalysed possible correlations between
electricity prices and disturbances in the Nordegien, are that a strong linear correlation (R>0.7)
exists between the volatility of disturbances amel de-trended spot price if we consider mean of
the time series on windows of six or twelve montlsing the Cross Correlation Function i.e.

shifting the time series one in respect to the rosieene correlations increases but the one between
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Disturbances and Prices never reaches values hilgaer0.4, anyway it has a regular oscillating
behaviour in respect to the delay and this can sigraof similarity between the two dynamics.
Finally we have applied Cross Recurrence Plot amalyhich gives an extension of the Cross
Correlation Function and it helps to detect portodrihe time series that are linear correlated. We
have demonstrated that some correlations incredgesfound time window in which the linear
correlation between disturbances and total consompind disturbances and spot prices increases
but the correlation values are not always sigatiie if we apply a t-test. The only disadvantafje o
CRP is that we can apply it to extract reliableoinfation only if we have a minimum amount of

data
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1. Introduction

The complex behaviour of financial time series, which linear stochastic models are not able to account for
(Mantegna & Stanley, 2000; Johnson et al., 2003), has been attributed to the fact that financial markets are
nonlinear stochastic, chaotic or a combination of both. Specifically, in the last decades there have been a
considerable amount of discussion about the characterization of financial time series using the theory of
Brownian motion (Osborne,1959; Malkiel, 1990), fractional Brownian motion (Mandelbrot, 1998), non-
linearity (Brock et al., 1991), chaos and fractals (Hsieh, 1991; Lorenz, 1993; Peters, 1996), scaling behaviour
(Mantegna and Stanley, 1995 and 1996), and self organized criticality (Bak and Chen, 1991; Shlesinger et al.,
1993). The problem of characterizing financial time series is still an open question. Most of the test developed
in the area of economic theory, provide evidence of nonlinear dynamics, which is a necessary but not sufficient
condition for chaos. This nonlinearity may be deterministic or not deterministic. In fact, there is no convincing
evidence of deterministic low-dimensionality in price series (Scheinkman and LeBaron, 1989; Papaioannou
and Karytinos, 1995) and the claims of low-dimensional chaos have never been well-justified. For example,
Andreadis (2000) analysing the S&P 500 index time series favours the stochastic hypothesis, whereas
Friederich er al. (2000), using the high frequency price changes of the US dollar-German Mark support the
analogy of turbulence and financial data (Mantenga and Stanley, 1996). Therefore, even though there is no
conclusive evidence of low dimension deterministic (chaotic) structure, in the last few years, nonlinear time
series analysis has expanded rapidly in the fields of Economics and Finance. This is also due to the fact that
economic and financial time series seem to provide a promising area for the development, testing and
application of nonlinear techniques (Soofi and Cao, 2002) and the fact that high frequency financial time series
are readily available.

Between these time series, energy spot prices have also been analysed with several nonlinear techniques.
Weron and Przybylowicz (2000) studied the electricity prices using Hurst R/S analysis and showed that they
are anti-persistent with a Hurst exponent lower that 0.5. Using another technique, the Average Wavelet
coefficient method, Simonsen (2003) calculated also the Hurst exponent and obtained a value of H=0.41 in
agreement also with another energy spot prices time series. In a recent study, Bask et al. (2007) estimated the
Lyapunov exponents and concluded that the dynamic system that generates these prices appeared to be chaotic
for the period July 1, 1999 to September 30, 2000. The question of modelling spot electricity prices has also
been addressed by several researchers. Because of the high volatility in Nord Pool electricity prices, Bystrom
(2005) applied extreme value theory (EVT) to investigate the tails of the price change distribution and then
used the peaks-over-threshold (POT) method to deals with the data that exceed the threshold. Then he used a
combined AR and GARCH model to fit the filtered time series to estimate as well as to forecast the time series.
Along the same lines, Perello et al. (2007) proposed a GARCH model for the spot price. Weron et al. (2004) fit
a jump diffusion and regime switching model to Nordic Pool spot prices. Vehvildinen and Pyykkonen (2005)
developed a stochastic factor based approach to mid-term modelling of spot prices taking into account climate
data, hydro-balance, base load supply and the underlying mechanisms in spot price generation. The model was
able to provide simulated values for the fundamental data, demand and supply information, and pricing

strategies.




F. Strozzi [et al.], Application of non-linear time series analysis techniques to the nordic spot electricity market data.

In this work we have applied non-linear time series techniques the Nordic spot electricity market data. The
time series are given in two periods, from May 1992 to December 1998 and from January 1999 to January
2007. Our main interest was on trying to classify these series and analysing if their dynamical behaviour were
in some way correlated with known events, e.g. the evolution of the Nord Pool and the climatic factors. This
work is a first step in the direction of finding correlation of some features of the time series with the frequency
and intensity of blackouts.

First, a preliminary study was carried out with the aim of characterising the time series in terms of power
spectral distribution, long term memory (R/S analysis), stationarity (space-time separation plots) and tails
(stable distributions). Surrogate time series were also generated to test if the original time series were similar to
a stationary Gaussian linear process. In a second step, state space reconstruction parameters: time delay and
embedding dimension were used to carry out the analysis of these two series in the reconstructed state space.
We applied Recurrence Quantification Analysis (RQA) (Webber and Zbilut, 1994), which is based on the
definition of several parameters that allows the quantification of the Recurrence Plots (RP) introduced by
Eckmann et al. (1987). The RQA analysis of both time series has shown a certain coherent structure with a
regime shift in the first time series. Moreover, the RQA analysis was repeatedly performed on 720-point epochs
(approx. one month) in order to analyse the dynamic information obtained. Neighbouring epochs were shifted
also by 720 points and the nonlinear variables: %recurrence, %determinism, %laminarity and trapping time
obtained for the time series analysed. A similar analysis has also been performed with the surrogate time series.
As discussed in the report, it is possible to correlate certain events with changes in %recurrence,
%determinism, %laminarity and trap time. Furthermore, the RQA method allows distinguishing the original
time from the surrogate the time series, indicating a certain nonlinear behaviour in the original series. The
preliminary results following the analysis of these series have shown that there are some similarities in terms of
certain statistical characteristics, but also differences with other high frequency financial time series (Strozzi et
al., 2002; Strozzi et al., 2007). Finally, we used two RQA measures, %determinism and %laminarity, for
developing a new measure of volatility which is able of detecting important historical and meteorological

events with better resolution than by measuring the time series standard deviation.

2. Data provision and treatment

We have analyzed hourly data from the Nord Pool system spot prices. The series is divided into two parts.
In the first part, that goes from 4™ May 1992 until 31* December 1998 and comprises 58,392 data points
(fig.1), the prices are indicated in Norwegian Krone (NOK)/MWh, whereas in the second time series that goes
from 1° January 1999 until 26™ January 2007 and comprises 70,752 data points (fig.2), the prices are expressed
in EUR/MWh.
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Figure 1.Spot prices in the Nordic electricity market (Nord Pool) from May 1992 until December 1998.
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Figure 2. Spot prices in the Nordic electricity market (Nord Pool) from January 1997 until January 2007.

2.1. Data treatment

We have considered the prices time series as well as the corresponding logarithmic returns over the time
horizon At, defined as:
P(1)

_— 1
P(t - At) M

ry,(t)=In

Figures 3 and 4 show the hourly returns for the two prices time series considered.
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Figure 3.Hourly logarithmic return (Eq. 1) for the spot prices in the Nordic electricity market (Nord Pool) from May 1992
until December 1998.
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Figure 4. Hourly logarithmic return (Eq. 1) for the spot prices in the Nordic electricity market (Nord Pool) from January
1997 until January 2007.

2.2. Historical background

Electricity deregulation started in individual countries, notably United Kingdom (1990) and Norway (1991),
and the Norwegian effort spread to the rest of the Nordic region before the European Union’s 1996 Electricity
Directive started to have real impact. This directive required that all EU countries opened up their electricity
markets to competition to consumers of more than 9 GWh by 2003. The various countries are free to choose
their own methods of deregulation in accordance to the criteria of the Directive. There were no provisions in
the Directive for a power pool or the establishment of financial markets (Mork, 2001). The Nordic electricity

market, known as Nord Pool (http://www.nordpool.no) was created in 1993 and it is owned by the two national

grid companies, Statnett SF in Norway (50%) and Affirverket Svensa Kraftndt in Sweden (50%). It was
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established as a consequence of the decision in 1991 by the Norwegian Parliament’s to deregulate the market
for power trading.

Therefore, between 1992 and 1995 only Norway contributed to the market, in 1996 a joint Norwegian-
Swedish power exchange was started-up and the power exchange was renamed Nod Pool ASA. Finland started
a power exchange market of its own, EL-EX, in 1996, and joined Nord Pool in 1997. Beginning of 15 June
1998, Finland became an independent price area on the Nord Pool Exchange. The western part of Denmark
(Jutland and Funen) has been part of the Nordic electric power market since 1 July 1999, whereas the eastern
part of Denmark entered after 1% October 2000. On 5™ October 2005 also the German area KONTEK was
added in the Nord Pool exchange market. Table 1 summarises the historical evolution of the Nord Pool,

whereas in Table 2 the deregulation process is also indicated.

Table 1. Nord Pool participating countries and dates of entry.

Countries Date of entry of new country
(dd/mm/yy)

Norway 1/1/93

Norway and Sweden 1/1/96

Norway, Sweden and Finland | 29/12/97

Norway, Sweden, Finland 1/7/99

and western Denmark

Norway, Sweden, Finland, 1/10/00

western and eastern Denmark

KONTEK (Germany) 5/10/05

Table 2. Summary of the deregulation process in Nord Pool members.

2004 | 2005

Sweden
Finland

West
Denmark

East
Denmark

Kontek

green= deregulation process; blue= NordPool member

The new bidding area named KT offered geographic access to the Vattenfall Europe Transmission control
area from East Denmark and allowed Nord Pool to compete directly with European Energy Exchange (EEX).
Kontek cable connects Zealand and Germany. Nord Pool owns 17.39% of the shares of EEX and proposed a
common market with EEX, but EEX did not agree (Kristiansen, 2006; 2007). Nevertheless the existence of a
common electricity market, there are still national transmission system operators and some differences with

respect to transmission pricing.
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The spot market operated by Nord Pool is an exchange market where participants’ trade power contracts for
physical delivery the next day and is thus referred to as a day-ahead market. The spot market is based on an
auction with bids for purchase and sale of power contracts of 1-h duration covering the 24 h of the following
day. At the deadline for the collection of all buy and sell orders the information is gathered into aggregate
supply and demand curves for each power-delivery hour. From these supply and demand curves the
equilibrium spot prices-referred to as the system prices-are calculated.

When no grid congestion exists there will be a single identical price across the area with no congestions.
However, when there is insufficient transmission capacity in a sector of the grid, grid congestion will arise and
the market system will establish different “price areas”. This is because the Nordic market is partitioned into
separate bidding areas which become separate price arecas when the contractual flow between bidding areas
exceeds the capacity allocated by the transmission system operators for spot contracts. In the case of congestion
the transmission system operators ask generators to reduce (increase) production or large buyer to increase
(decrease) demand until excess of supply or demand are eliminated. The fact that separate prices may coexist
depending upon regional supply and demand causes the relevant market definition to vary with time.
Sometimes the prices are of the entire Nordic region. Sometimes more than one price area exists (Haldrup and
Nielsen, 2006). Thus, whenever the relevant interconnector capacity is insufficient the Nord Pool area is
divided into two or several “price areas”. Sweden is always one single price area, and the same applies to
Finland. In Denmark the transmission system is divided into two parts, West and East, and consequently there
are two price areas. In Norway the congestion charges effectively divides the country into five price areas. In
addition to the “area prices” there is a “system price”. This price is determined under the assumption that no
transmission constraint is binding. The system price is the reference price in the financial contracts (Amundsen
and Bergman, 2007). Haldrup and Nielsen (2006) found that looking to hourly data from 3.1.2000 to
25.10.2003, 34.24% of time all the prices for the entire Nordic region where identical. Two price areas existed
in 34.55% and three in 20.86 % of the time. In only 11 hours there was complete congestion and six different
price areas existed i.e. one for each geographical market. Despite these differences, in this work we will only
consider “system price”.

The variation of the prices in the Nord pool system is well correlated with the variations in precipitation in
Norway and Sweden because of its strong dependence of the hydropower generation. Table 3 summarises the
climatic conditions during the last years. The 1996 was a “dry” year, while 1997-2000 was a series of “wet”
years. The 2000 was not very “wet” and the first part of 2001 was quite “dry” but the autumn was very rainy
and 2001 started well with a water reservoir above the normal. Very special hydrological conditions appeared
during the autumn and winter season of 2002-2003 with a sharp decline of precipitation. This was a rare event
that could happen only every 100-200 years (Weron ef al., 2004). The result was the increasing of spot prices in
2003.
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Table 3. Summary of meteorological conditions: Dry and wet years.

year state Period considered
1996 dry 1.1.96-31.12.96
1997-2000 wet 1.1.97-31.12.99
2000 not very wet 1.1.2000-31.12.2000
First part 2001 dry 1.1.2001-31.8.2001
Autumn 2001 very wet 1.9.2001-31.12.2001
2002-2003 very dry (rare event) | 1.1.2002-31.12.2003

By looking into figs. 1-2 and comparing with Table 3, we can observe these correlations in the electricity
price. However, weather conditions are not able to explain all the features in the time series. For example, the
relative sharp price increase between 2000 and 2001 could be explained by a combination of the market power
exercised by the mayor generators, the increased demand and higher fuel prices (Weron et al., 2004). Moreover
spot prices can increase tenfold during a single hour. Jumps in the spot prices are an effect of extreme load
fluctuations, caused by severe weather conditions often in combination with generation outages or transmission
failures. These spikes are normally quite short lived, and as soon as the weather phenomenon or outage is over,
prices fall back to a normal level. Jumps tend to be more severe during high price periods and a positive jump

may be followed by a negative jump to capture the rapid decline of electricity prices (Weron et al., 2004).

2.3. Material and methods

There are different freely available software packages on the Internet that may be used to perform non-
linear time series analysis. In this work, we have used several of them for different purposes as indicated
bellow.

One of the most complete is the TISEAN software package (http://www.mpipks-dresden.mpg.de/~tisean)
which has incorporated an impressive quantity of algorithms developed in the nonlinear time series analysis
field (Kantz and Schreiber, 1997). There is a version for MATLAB® users developed at Gottingen University,
called TSTOOL, that can be download at http://www.physik3.gwdg.de/tstool/. Furthermore, a commercially
available software package developed by Abarbanel and co-workers (Abarbanel, 1996) and commercialised by
Randle Inc., called Csp, can be found at http://www.chaotic.com/.

Concerning Recurrence Quantification Analysis, the original programs developed by Weber and Zbilut
(1994) can be download at at http:/homepages.luc.edu/~cwebber., whereas a MATLAB®™ version of RQA
developed at the University of Postdam called CRP toolbox can be found at http://tocsy.agnld.uni-postdam.de
(Marwan et al., 2007). In addition, there is a commercially available version called VRA (Visual Recurrence
Analysis) that can be obtained at http://home.netcom.com/~eugenek/download.html

Finally, the analysis of stable distributions has been carried out using the program STABLE for univariate

data (http://www.cas.american.edu/~jpnolan).
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3. Embedding theory
The mathematical basis of continuous dynamical modelling is formed by differential equations of the
following type:
dx
—=F(x,0) ()
dt

where the real variable ¢ denotes time, X = (x;, x),..., X;) represents the state variables of the system,
depending on time ¢ and on the initial conditions, and @; are parameters of the system, while F = (F;,F>,...,
F,,) is a nonlinear function of these variables and parameters. Actual states of these systems are described by

the vector variable X consisting of n independent components. Each state of the system corresponds to a
definite point in phase space, which is called phase point. The time variation of the state of the system is
represented as a motion along some curve called phase trajectory.

Experimentally, it is not always possible to measure the complete state of a system and, normally, when
analysing a dynamical system, we have access to few observable quantities which, in the absence of noise, are

related to the state space coordinates by:
s(t) = h(x(?)) 3)

where h is normally an unknown nonlinear function called measurement function. The theory of embedding
is a way to move from a temporal time series of measurements to a state space "similar" -in a topological sense-
to that of the underlying dynamical system we are interested in analysing. Techniques of state space
reconstruction were introduced by Packard et al. (1981) and Takens (1981), which showed that it is possible to
address this problem using measurements of a sufficient long time series, s(?), of the dynamical system of
interest. Takens proved that, under certain conditions, the dynamics on the attractor of the underlying original
system has a one-to-one correspondence with measurements of a limited number of variables. This observation
opened a new field of research. In fact, if the equations defining the underlying dynamical system are not
known, and we are not able to measure all the state space variables, the state space of the original system is not
directly accessible to us. However, if by measuring few variables we are able to reconstruct a one-to-one
correspondence between the reconstructed state space and the original, this means that it is possible to identify
unambiguously the original state space from measurements. Embedding theory has opened a new field of
research: nonlinear time series analysis (Tong, 1990; Abarbanel, 1996; Kantz and Schreiber, 1997; Diks, 1999,
amongst others).

In order to explain the relationship that occurs between the reconstructed and the real state space, let us

consider the following dynamical system

dx
E:F(X)’ X:(xl’xz’)%) (4)

We can define y = (1,,¥,, ;) as follows:y = (x,,dx, /dt,d’x, / dt"), then the equations of motion

take the form

dy, _

i Y2
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dy,

2 5
a0 ©)
dy

d; =G(y,,¥,,¥3)

for some function G. In this coordinate system, modelling the dynamics reduces to constructing the single

function G of three variables, rather than three separate functions, each of three variables.

In this way we may proceed from the state space (Xx,,X,,X;) to the space of

derivatives (x,,dx, / dt,d’x, / dt”) . The dynamics in this new space will be related to the dynamics of the

original space by a nonlinear transformation which is called the reconstruction map. The extension of this
approach to higher-dimensional dynamical systems is straightforward by considering higher derivatives.
The advantage in considering the space of derivatives is that we can approximate them from measurements

of x ;. But what kind of information about the original space is preserved in the new one?

There are two types of preserved information: qualitative and quantitative. Qualitative information is that
which allows a qualitative description of the dynamics described by topological invariants, such as for instance,
singularity of the field, closeness of an orbit, stability of a fixed point, etc. (Gilmore, 1998) Quantitative
information can be of two different types: geometrical and dynamical. Geometrical properties (Grassberger,
1983) consist on fractal dimensions or scaling functions. Dynamical methods (Wolf et al., 1985) rely on the
estimation of local and global Lyapunov exponents and Lyapunov dimensions. In order to guarantee that the
quantities computed for the reconstructed attractor are identical to those in the original state space, we require
that the structure of the tangent space, i.e. the linearization of the dynamics at any point in the state space, is
preserved by the reconstruction process. The problem is to see under what conditions this can happen.
Embedding theorems try to shed some light on this problem.

Let s(2) be the measure of some variable of our system, see Eq. (3). Takens (1981) shown that instead of
derivatives, {S(l‘),&(t),.'s;(t),...}, one can use delay coordinates, {S(t),s(t + At),s(t + 2At),...}, where At is

a suitably chosen time delay. In fact, looking at the following approximation of the derivative of s(?):

ds(t) - s(t+ At)—s(t)

6
dt At ©

d’s(t) _ s(z+2A0) =25t + Ar) + () -
> 2At°

it is clear that the new information brought from every new derivative is contained in the series of the delay
coordinates. The advantage of using delay coordinates instead of derivatives is that in case of high dimensions
high order derivatives will tend to amplify considerably the noise in the measurements.

Another generally used method, for state space reconstruction, is singular value decomposition (SVD),
otherwise known as Karhunen-Loéve decomposition, which was proposed by Broomhead and King (1986) in
this context. The simplest way to implement this procedure is to compute the covariance matrix of the signal
with itself and then to compute the eigenvalues, i.e. if 5(?) is the signal at time ¢, the elements of the covariance

matrix Cov are:

10
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¢y =(s@s(t+ - o) ®)
where 7 and j go from 1 to n where n is bigger or equal to the dimension of the system in this new space.
The eigenvectors of Cov define a new coordinate system. Typically, one calculates the dimension of the
reconstructed phase space by considering only eigenvectors whose eigenvalues are “large”.
Then, from the space of derivatives, time lags or eigenvectors, it is possible to extract information about the
underlying system, which was generating the measured data.
In order to preserve the structure of tangent space and then the dynamic characteristic of it, the relation

between the reconstructed space and the original one has to be an embedding of a compact smooth manifold

into R2"*1 which means a one-to-one immersion i.e. a one-to-one c! map with Jacobian which has full rank
everywhere. The point now is to show under what conditions the reconstruction forms an embedding.

A general existence theorem for embedding in Euclidean spaces was given by Whitney (1936) who proved

that a smooth (CZ) n-dimensional manifold may be embedded in R?n+1 This theorem is the basis of the time
delay reconstruction (or embedding) techniques for phase space portraits from time series measurements

proposed by Takens (1981), who proved that, under certain circumstances, if d -the dimension of the

reconstructed state vector, normally called the embedding dimension- is greater or equal to 2n+1, where n is
the dimension of the original state space, then the reconstructed states fill out a reconstructed state space which
is diffeomorphic, i.e. a one-to-one differentiable mapping with a differentiable inverse, to the original system.
Generally speaking, the embedding dimension is the minimal number of dynamical variables with which we
can describe the attractor when we know only one of its state variables or a function related to them.

Apart from the methods mentioned above, there are several other methods of reconstructing state space
from the observed quantity s(?) that have appeared in the literature -for a critical review see Breeden and
Packard (1994). Although the method of reconstruction can make a big difference in the quality of the resulting
coordinates, it is not clear in general which method is the best. The lack of a unique solution for all cases is due
in part to the presence of noise and to the finite length of the available data sets.

For Takens' theorem to be valid we need to assume that the underlying dynamics is deterministic and that
both the dynamics and the observations are autonomous, i.e. F and h in Egs. (2) and (3) depend only on x and
not on ¢. Unfortunately, this is not the case of many systems in the field of control and communications which
are designed to process some arbitrary input and hence, cannot be treated as autonomous. The extension of
Takens' theorem to deterministically forced stochastic systems has been recently developed by Stark et al.
(1997). In particular they proved that such an extension is possible for deterministically forced systems even
when the forcing function is unknown, for input-output systems (which are just deterministic systems forced by
an arbitrary input sequence) and for irregular sampled systems.

Another problem in embedding theory is that Takens' theorem has been proven for noise-free systems.
Unfortunately, there is always a certain amount of noise, of?), in real data. Such noise can appear in both the
measurements and the dynamics (Diks, 1999). Observational noise, i.e. s(2)=h(X(?))+o(t), does not affect the
evolution of the dynamical system, whereas dynamical noise acts directly on the state of the dynamical system

influencing its evolution, for example: dx/dt=F (X, o)+ o(t).

11
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The effects of relatively small amount of observational noise may put severe restrictions on the
characterisation and estimation of the properties of the underlying dynamical system. In order to remove the
observational noise different possibilities are available which can be broadly divided into two categories: linear
filters (Badii et al., 1988) and special nonlinear noise reduction methods that make use of the deterministic
origin of the signal we are interested in (for a recent survey see: Kostelich and Schreiber, 1993; Davies, 1994).
However, in the case of dynamical noise, the reconstruction theorem does not apply and it may even be
impossible to reconstruct the state of the system (Takens, 1996). In this situation, systems must be examined
case by case before analysis. In particular, Stark et al. (1997) showed that the extension of Takens' theorem is

possible for deterministic systems driven by some stochastic process.

3.1. Embedding parameters

The embedding theorem is important because it gives a rigorous justification for the state space
reconstruction. However, Takens' theorem is true for the unrealistic case of an infinite, noise-free, number of
points. Takens showed that, in this case, the choice of the time delay is not relevant, and gave indications only
on the choice of the embedding dimension.

Nevertheless, in real applications, the proper choice of the time delay 7 and the calculation of an embedding

dimension, df;, are fundamental for starting to analyse the data. As a matter of fact, a lot of research on state

space reconstruction has centred on the problems of choosing the time delay and the embedding dimension
which we can call the parameters of the reconstruction for delay coordinates.

If the time delay chosen is too small, there is almost no difference between the elements of the delay
vectors, since that all points are accumulated around the bisectrix of the embedding space: this is called
redundancy (Casdagli ef al., 1991). However, when 7 is very large, the different co-ordinates may be almost
uncorrelated. In this case the reconstructed trajectory may become very complicated, even if the underlying
"true" trajectory is simple: this is called irrelevance. Unfortunately no rigorous way exists of determining the
optimal value of 7. Moreover, similar problems are encountered for the embedding dimension. Working in a
dimension larger than the minimum required by the data will lead to excessive requirements in terms of the
number of data points and computation times necessary when investigating different questions such as, for
example invariants calculation, prediction, etc. Furthermore, noise by definition has an infinite embedding
dimension, so it will tend to occupy the additional dimensions of the embedding space where no real dynamics
is operating and, hence, it will increase the error in the subsequent calculations. On the other hand, by selecting
an embedding dimension lower than required, we would not be able to unfold the underlying dynamics, i.e. the

calculations would be wrong since we do not have an embedding.
When derivatives, {S(t),S‘(l‘ ),S(t),} , or SVD are employed there is no need to determine an optimum

time delay. Nevertheless, for the case of derivatives, the reconstruction will depend on the way they are
numerically calculated (which turns out to depend on different parameters, see for example (Burden and Faires,
1996) for a review of numerical calculation of derivatives). In practice for each method we will carry out a
slightly different state space reconstruction. For the case of SVD, the time delay chosen is unitary, but there is

still the problem of choosing the time scale or window in which the calculations are performed. Broomhead and
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King (1986) in fact, concluded that the effects of window length should be carefully investigated each time a

state space reconstruction is carried out.

4. Chaotic time series analysis

Nonlinear analysis of experimental time series has, among its goals, the separation of high-dimensional and

stochastic dynamics from low-dimensional deterministic signals, estimation of system parameters or invariants

(characterisation), and, finally, prediction, modelling and control.

Unfortunately it seems very difficult to tell whether a series is stochastic or deterministically chaotic or

some combination of these categories. More generally, the extent to which a non-linear deterministic process

retains its properties when corrupted by noise is also unclear. The noise can affect a system in different way,

either in an additive way or as a measurement error, even though the equations of the system remain

deterministic.

Time series data

Pre-processing

/ v \
g Stationary Deterministic Testing for
non-stationary? Stochastic? nonlinearity
Non-stationary, Stationary Deterministic Low noise level
Characterization
Recurrence s X‘ / AT
tification Finding At
Quantif State space
Analysis reconstruction T
Finding d
Fractal
dimensions
g Lyapunov Calculation of Calculation of
Exponents invariants: active degrees of
- dimensions, freedom, d<d
- dynamical, - .
Invariant - topological
orbits
Applications
~
Chaos Nonlinear Essential
control prediction Modelling
Coherence tests l
Numerical
Simulation

Figure 5. Schematic representation of nonlinear time series analysis using delay coordinate embedding (Strozzi and

Zaldivar, 2002).
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A schematic representation of the different steps is given in Fig. 5. Since a single reliable statistical test for
chaoticity is not available, combining multiple tests is a crucial aspect, specially when one is dealing with
limited and noisy data sets like in economic and financial time series.

There are different aspects that should be carefully studied before attempting to go further using nonlinear
time series analysis methods. A long and exhaustive discussion can be found in Schreiber (1998) and the basic
methodologies will be presented during the analysis part. Here, we are briefly going to indicate the main
problems one should be aware of. These can be summarized as follows:

e has the phenomenon been sufficiently sampled?;

e is the data set stationary or can one remove the nonstationary part?;

e s the level of noise sufficiently low so that one can obtain useful information using nonlinear time

series techniques?

Some tests to study these questions have been recently implemented in the TISEAN software package
(Hegger et al., 1999), which has incorporated a substantial quantity of algorithms developed for nonlinear time
series analysis.

The problem of the number of samples needed to carry out state space reconstruction is related to the
dimensionality of the problem we are dealing with. In order to characterize properly the underlying dynamics
from the observed time series, we need to sample properly the phase space in which our dynamical system lies.
As the dimension of the underlying system increases, a higher number of samples is needed. Ruelle (1990)
discussed this problem, and based on simple geometrical considerations, he arrived at the following conclusion:

if the calculated dimension of our system is well below 2/og;gm, where m is the total number of points in the

original time series, then we are using a sufficient number of data points. Of course having a sufficient number
of data points is a necessary but not a sufficient condition for reliable nonlinear time series analysis.

Another related problem is the sampling rate. Consider the case when we are sampling data from a,
presumably, chaotic system. Chaotic systems, like stochastic ones, are unpredictable in the long run. This long
run is related to the speed at which nearby trajectories diverge in phase space, which turns out to be related to
the Lyapunov exponents of the system under study. Hence, if we are sampling at a rate slower than our
predictability window, even though the underlying system is chaotic, we will find that our system behaves as a
stochastic one. In this situation, if one suspects that the underlying system is deterministic, the best thing to do
is to repeat the experiment by increasing the sampling rate. Interpolating between data points would be of no
use as no new information is introduced.

A time series is said to be strictly stationary if its statistical distribution does not change across time. More

specifically, suppose we have a set of m samples of the series s(¢) made at times ¢; through ¢, these need not

be contiguous times. Strict stationarity implies that the joint probability density function of those m samples is

identical to the joint probability distribution of another m samples taken at times #; 4 through #,, ;. This must

be true for all the choices of m and £, as well for the m relative sample times. Why is stationarity so important?
Because almost all methods developed by linear and nonlinear time series analysis assume that the time series
we are analysing is stationary, which implies that the parameters of the system that has generated the time
series, remain constant. For this reason time-series analysis often requires one to turn a nonstationary series into

a stationary one so as to use these theories. Unfortunately, nonstationary signals are very common in particular
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when observing natural or man-made phenomena, and in some cases the nonstationary components, such as the
trend, may sometimes be of more interest than that of the stationary part obtained by removing the trend or the
seasonal variation from the signal.

Even though a precise definition of stationarity exists, there is no magic formula for deciding whether a
series is stationary or not. However, strong violations of the basic requirements that the dynamical properties of
the system must not change, beyond their statistical fluctuations, can be checked simply by measuring such
properties, i.e. mean, variance, spectral components, correlations, etc., for several segments of the data set.
Nonlinear time series analysis has also developed its own techniques to study nonstationarity as we will see

bellow.

4.1. Preliminary Analysis

4.1.1. Surrogate time series generation

If the dynamics that has generated the time series is not known or if the data are noisy, it is important to
investigate whether the amount of nonlinear deterministic dependencies is worth analyzing further or whether
the series can be considered as stochastic. Hence, one of the first steps before applying nonlinear techniques to
the Nord Pool data is to investigate if the use of such advanced techniques is justified by the data. The main
reason behind this reasoning is that linear stochastic processes can create very complicated looking signals and
that not all the structures that we find in a data set are likely to be due to nonlinear dynamics going on within
the system. The method of surrogate data, see for example Schreiber and Schmitz (2000) for a review, has
become a useful tool to address the question if the irregularity of the data is most likely due to nonlinear
deterministic structure or rather due to random inputs to the system or fluctuations in the parameters.

The method of surrogate data, which was first introduced by Theiler ez al. (1992) in nonlinear time series
analysis, consists of generating an ensemble of “surrogate” data sets similar to the original time series, but
consistent with the null hypothesis, usually that the data have been created by a stationary Gaussian linear
process, and of computing a discriminating statistic for the original and for each of the surrogate data sets

In general a linear stochastic process can be described by
X, =a,+ Zaixn_l. + ijnn_j 9)

where 77, are independent Gaussian random numbers with zero mean and unit variance and a;, b;, M; and

M, are constants. This is called an ARMA(M;, M,) process. Now we want to test the hypothesis that the data

could be explained by a linear model. A statistical significance test consists on the following steps: a/ we
compute some nonlinear observable A, from the data; b/ we observe if the value obtained suggests that the

data are nonlinear and we calculate the same quantity from a number of comparable linear models. If the results

are completely different the data might be nonlinear. If we have any theory for the distribution of the values of
ﬂ,l. for linear stochastic process, we can estimate their distribution using the method of surrogate data. The null

hypothesis that we want to test is that the data results from a Gaussian linear stochastic process. Then we

should specify the level of significance. If we allow for a 5% chance that we reject the null hypothesis although
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it is in fact true (valid at a 95% significance level) then more than one wrong result out of 19 is usually not
considered acceptable (Schreiber and Schmitz, 2000). How to make surrogate data sets? Let we suppose that
the data came from a stationary linear stochastic process with Gaussian inputs. We consider the mean, the
variance and the autocorrelation function of the real data or equivalently the mean and the power spectrum.

We can create surrogate data by taking their fast (discrete) Fourier transform (FFT) and multiplying it by a
random phase parameter uniformly distributed in [0,27[, then it is possible to compute the inverse of FFT and
we have a time series with the prescribed spectrum. Different realization of the random phase gives new

surrogate data. This process of phase randomisation preserves the Gaussian distribution.

800 T T T T T

700 1

Figure 6. Four surrogate time series generated for the Nord pool spot price in Norwegian Krone (Fig. 1) using the TISEAN
software package (Hegger ef al., 1999) with surrogates program.

In this work, we have created 19 surrogate data sets (same mean, variance and Fourier power spectrum) for
each Nord Pool spot prices time series, for example see Fig. 6, these time series data comes from a stationary
linear stochastic process with Gaussian inputs.

In addition, we have also considered another null hypothesis: the data are simply temporally uncorrelated
noise i.e. the null hypothesis is any correlation at all. Surrogate data in this case are generated by a random
shuffling of the original time series. Also, in this case, we have created 19 surrogate data sets from the original

time series.

4.1.2. R/S Analysis

A tool for studying long-term memory and fractality of a time series is the Rescaled Range analysis (R/S
analysis) first introduced by Hurst (1951) in hydrology. Mandelbrot (1983) argued that R/S analysis is a more
powerful tool in detecting long range dependence when compared to more conventional analysis like
autocorrelation analysis, variance ratios and spectral analysis. In this method, one measures how the range of
cumulative deviations from the mean of the series is changing with the time. It has been found that, for some

time series, the dependence of R/S on the number of data points (or time) follows an empirical power law
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described as (R/S),,=(R/S)¢ nH where (R/S) is a constant, z is the time index for periods of different length,

and H is the Hurst exponent. (R/S),, is defined as

[RJ _ max,, A(t,n)—min,_,_, A(t,n)

S

- = (10)
ZZ(SU) ~(s),)’

where A(t,n) is the accumulated departure of the time series s(?) from the time average over the time interval

t+n

ni(s)  A(t,n) = Z(s(i) —(s) ).

The Hurst exponent, 0<H<I, is equal to 0.5 for random walk time series, <0.5 for anticorrelated series, and
>0.5 for positively correlated series. The Hurst exponent is directly related to the "fractal dimension", which
gives a measure of the roughness of a surface. The relationship between the fractal dimension, D, and the Hurst
exponent, H, is:

D=2-H (11)

Hurst exponents quantify the correlation of a fractional Brownian motion. A fractional Brownian motion

(fBm) is a random walk with a Hurst exponent different from 0.5 and then with a memory. The decaying of

spectral density of a fBm has a relationship with the Hurst exponent as follow:

) 1
spectral density oc F (12)

where « = 2H +1.

Financial time series have been found to exhibit some universal characteristics that resemble the scaling
laws typical of natural systems in which large numbers of units interact. For instance, the Hurst exponent has
been extensively applied by Peters (1996) to various capital markets and in most of the cases he has found
persistent memory.

A long memory process is a process with a random component, where a past event has a decaying effect on
future events. The process has some memory of past events, which is "forgotten" as time moves forward. The
mathematical definition of long memory processes is given in terms of autocorrelation. When a data set
exhibits autocorrelation, a value x; at time ¢; is correlated with a value x;,, at time #;,4, where d is some time
increment in the future. In a long memory process autocorrelation decays over time and the decay follows a

power law, i.e
p(k)=Ck™” (13)
where, C is a constant and p(k) is the autocorrelation function with lag k. The Hurst exponent is related to

the exponent 3 by
H=1- ﬁ (14)
2
In this work we have used the standard scaled windowed variance method (Cannon ef al., 1997) to estimate
H by linear regression of log(R/S) versus log(Windowsize). The results for the two original time series and the

surrogate series are shown in Tables 4-5. As it can be seen both time series show antipersistence, H<0.5. This
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has already been found by several researchers (Weron and Przybylowicz, 2000; Simonsen 2003; Perello et al.
2007, amongst others).In all cases, the Hurst exponents of the original time series are slightly higher than those
of the linear surrogate time series but this does not mean that the value of H helps us to distinguish between the
original time series and their surrogates, because H for the linear surrogate of NOK is higher than H for real
EUR (Table 4). For the shuffled surrogate time series we can observe that H for surrogates is nearer to 0.5

independently if we consider the surrogate of NOK or of EUR (Table 5).

Table 4. Hurst exponents for the Nord pool and the surrogate linearly correlated time series.

Data set H Data set H
NOK 0.4406 | EUR 0.2673
Surr0l nl| 0.3632 | Surr0l el | 0.1231
Surr02 nl | 0.3824 | Surr(2 el | 0.0899
Surr03 nl | 0.3399 | Surr03 el | 0.1402
Surr04 nl | 0.3646 | Surr04 el | 0.1631
Surr05 nl | 0.3276 | Surr05 el | 0.1597
Surr06 nl| 0.4151 | Surr06 el | 0.1325
Surr07 nl| 0.3480 | Surr07 el | 0.0914
Surr08 nl | 0.3497 | Surr08 el | 0.2262
Surr09n 1| 0.3125 | Surr09 el | 0.1063
Surrl0 nl | 0.3024 | Surrl0 el | 0.1673
Surrll nl | 0.3396 | Surril el | 0.1434
Surrl2 nl | 0.3624 | Surri2 el | 0.1612
Surri3 nl| 0.3795 | Surri3 el | 0.1990
Surrli4 nl| 0.3602 | Surri4 el | 0.1604
Surrl5 nl| 0.3574 | Surrl5 el | 0.1368
Surrl6 nl | 0.3406 | Surri6 el | 0.2096
Surrl7 nl| 0.3874 | Surrl7 el | 0.1814
Surrl8 nl | 0.3369 | Surri8 el | 0.1089
Surrl9 nl| 0.3774 | Surri9 el | 0.0905

Table 5. Hurst exponents for the Nord pool and the surrogate shuffled time series.

Data set H Data set H

NOK 0.4406 | EUR 0.2673
Surr0l ns | 0.4886 | Surr0l es | 0.4293
Surr02 ns | 0.4842 | Surr02 es | 0.4293
Surr03 ns | 0.4847 | Surr03 es | 0.4423
Surr04 ns | 0.4773 | Surr04 es | 0.4136
Surr05 ns | 0.4857 | Surr05 es | 0.4267
Surr06 ns | 0.5036 | Surr06 es | 0.4437
Surr07 ns | 0.4877 | Surr07 es | 0.4349
Surr08 ns | 0.5026 | Surr08 es | 0.4238
Surr09 ns | 0.4888 | Surr09 es | 0.4366
Surrl0 ns | 0.4846 | Surrl0 es | 0.4274
Surrll ns | 0.4874 | Surrll es | 0.4261
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Surrl2 ns | 0.4948 | Surri2 es | 0.4266
Surri3 ns | 0.4848 | Surrl3 es | 0.4315
Surrl4 ns | 0.4824 | Surri4 es | 0.4245
Surrl5 ns | 0.4690 | Surrl5 es | 0.4279
Surrl6 ns | 0.4882 | Surri6 es | 0.4253
Surrl7 ns | 0.4780 | Surrl7 es | 0.4292
Surrl8 ns | 0.4795 | Surri8 es | 0.4299
Surrl9 ns | 0.4798 | Surri9 es | 0.4270

4.1.3. Power Spectral Density

The Fourier transform of a function s(?) is given by:

s(t)e™™ dt (15)

o
s(f)—ﬂ_jw

and that of a finite, discrete time series by

N
3, Z%;S‘/ezmkn/zv (16)
Here, the frequencies in physical units are fj=k/(NAt), where k=-N/2,...,N/2 and At is the sampling interval
(1 hour in our case). The power spectrum of a process is defined to be the squared modulus of the continuous
Fourier transform, P(f) = |§( f )|2 . The power spectrum is particularly useful for studying the main

frequencies in a system, since there will be sharper or broader peaks at the dominant frequencies and their
integer multiples, the harmonics.
In Figures 7-8 we observe the power spectral density of Nord Pool time series. For both of them, we have

found behaviour of the type

P(f)ec

1
re (17)
where a is a positive real number. The values of o for Nord Pool time series and their surrogates are listed

in Tables 6-7.
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Power Spectral Density

_4 1 1 1 1 1 1 1 1
-3 -7 R -3 -4 -3 -2 -1 0 1

frequency

Figure 7. The power spectrum (log-log scale) , NOK (a=1.4612).

FPower Spectral Density
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Figure 8. The power spectrum (log-log scale) EUR ([1=1.4562).
Table 6. Power spectra trend o calculated using linear regression (LR) and Hurst exponent H. Real and linearly correlated
data
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Data set | o (LR) | a=2H+1 | Dataset | a(PS) | a=2H+1
NOK 1.4612 | 1.8812 EUR 1.4562 | 1.5346
Surr0l nl | 1.3626 | 1.7264 | Surr0l el | 1.4281 | 1.2462
Surr02 nl | 1.3577 | 1.7648 | Surr02 el | 1.4453 | 1.1798
Surr03 nl | 1.3527 | 1.6798 | Surr03 el | 1.4296 | 1.2804
Surr04_nl | 1.3440 | 1.7292 | Surr04 el | 1.4546 | 1.3262
Surr05 nl | 1.4719 | 1.6552 | Surr05 el | 1.3914 | 1.3194
Surr06 nl | 1.4085 | 1.8302 | Surr06 el | 1.4300 | 1.2650
Surr07 nl | 1.3383 | 1.6960 | Surr07 el | 1.4140 | 1.1828
Surr08 nl | 1.3628 | 1.6994 | Surr08 el | 1.4131 | 1.4524
Surr09 nl | 1.3406 | 1.6250 | Surr09 el | 1.4558 | 1.2126
Surrl0 nl | 1.3566 | 1.6048 | Surri0 el | 1.4289 | 1.3346
Surrll nl| 1.3564 | 1.6792 | Surrll el | 1.4466 | 1.2868
Surri2 nl | 1.3301 | 1.7248 | Surri2 el | 1.4404 | 1.3224
Surrl3 nl | 1.3652 | 1.7590 | Surri3 el | 1.4276 | 1.3980
Surri4 nl | 1.3767 | 1.7204 | Surri4 el | 1.4330 | 1.3208
Surrl5 nl | 1.3690 | 1.7148 | Surrl5 el | 1.4341 | 1.2736
Surrl6 nl| 1.3701 | 1.6812 | Surri6 el | 1.4506 | 1.4192
Surrl7 nl | 1.3589 | 1.7748 | Surri7 el | 1.4455 | 1.3628
Surrl8 nl | 1.3483 | 1.6738 | Surrl8 el | 1.4554 | 1.2178
Surrl9 nl| 1.3646 | 1.7548 | Surrl9 el | 1.4666 | 1.1810

Table 7. Power spectra trend o, calculated using linear regression (LR) and Hurst exponent H. Real and shuffled data

Dataset | o (LR) | a=2H+1 | Dataset | o(PS) | a=2H+1

NOK 1.4612 | 1.8812 EUR 1.4562 | 1.5346
Surr0l ns | 0.0100 | 1.0200 | Surr001 es | 0.0139 | 1.0278
Surr02 ns | 0.0106 | 1.0212 | Surr002 es | 0.0148 | 1.0296
Surr03 ns | 0.0150 | 1.0300 | Surr003 es | 0.0084 | 1.0168
Surr04 ns | 0.0294 | 1.0588 | Surr004 es | 0.0237 | 1.0474
Surr05 ns | 0.0200 | 1.0400 | Surr005 es | 0.0097 | 1.0194
Surr06 ns | 0.0151 | 1.0302 | Surr006 es | 0.0019 | 1.0038
Surr07 ns | 0.0212 | 1.0424 | Surr007 es | 0.0153 | 1.0306
Surr08 ns | 0.0099 | 1.0198 | Surr008 es | 0.0126 | 1.0252
Surr09 ns | 0.0243 | 1.0486 | Surr009 es | 0.0147 | 1.0294
Surrl0 ns | 0.0208 | 1.0416 | Surr010 es | 0.0138 | 1.0276
Surrll ns | 0.0216 | 1.0432 | Surr0l1 es | 0.0208 | 1.0416
Surrl2 ns | 0.0183 | 1.0366 | Surr012 es | 0.0137 | 1.0274
Surri3 ns | 0.0218 | 1.0436 | Surr013 es | 0.0114 | 1.0228
Surrl4 ns | 0.0265 | 1.0530 | Surr0i4 es | 0.0154 | 1.0308
Surrl5 ns | 0.0261 | 1.0522 | Surr015 es | 0.0182 | 1.0364
Surrl6 ns | 0.0124 | 1.0248 | Surr016 es | 0.0247 | 1.0494
Surrl7 ns | 0.0192 | 1.0384 | Surr0l7 es | 0.0177 | 1.0354
Surrl8 ns | 0.0160 | 1.0320 | Surr0I8 es | 0.0106 | 1.0212
Surrl9 ns | 0.0133 | 1.0266 | Surr019 es | 0.0201 | 1.0402
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It has been observed experimentally (Shuster, 1995) that the power spectra of a large variety of physical
systems diverge at low frequencies with a power low 1/ f“ (0.8<a<1.4).

The appearance of a scaling behaviour in the power spectrum of economic time series support further,
according to Theiler (1991), the existence of a self-organisation with many degree of freedom for these series.

If the motion is a fractional Brownian motion (fBm) a relationship exists between the Hurst exponent and
the scaling factor of the power low o , see Eq. (11). We have calculated o from Hurst and directly from the
spectrum. The results are presented in Tables 6 and 7. In all the time series considered, real and surrogate, the
values are significantly different. However, this is not conclusive since there is a certain amount of variability
calculating the Hurst exponents as well as « that may be responsible for these differences in particular for the

linear surrogate time series.

4.1.4. Fitting Nord Pool data with stable distributions

Stable distributions are a class of distributions that have the property of stability: if a number of independent
and identically distributed (iid) random variables have a stable distribution, then a linear combination of these
variables will have the same distribution, except for possibly different shift and scale parameters. Special cases
of stable distributions include Gaussian, Cauchy and Levy distributions. They are described by four parameters
the first two are ae(0,2], an index of stability and Be[-1,1], a skewness parameter. o and [ determine the
shape of the distribution. The last parameters are ye[0,0) a scale parameter and de(—o0,0) a location
parameter.

A stable probability distribution is defined by the Fourier transform of its characteristic function (o(l‘):

o0

1 —itx
f@a,B,7,8) = [olt)e™di (18)
27 7
where (/)(t) is given by
olt)= explits—| | (1-ipsgn(t)o) (19)
and sgn(t) is just the sign of t and @ is given by
O = tan(za/2) (20)

for all a except a=1 in which case:
O =—(2/7)log(t) 21)

There is no general analytic expression for a stable distribution. There are, however four special cases
which can be analytically expressed:

a/ for a=2 the distribution becomes a Gaussian distribution with variance &> = 2 }/2 and mean O

b/ for a=1 and B=0 the distribution reduces to a Cauchy distribution with scale parameter y and shift
parameter O

¢/ for 0=1/2 and B=1 the distribution reduces to a Levy distribution with scale parameter y and shift

parameter O

22



F. Strozzi [et al.], Application of non-linear time series analysis techniques to the nordic spot electricity market data.

d/ In the limit as y=> 0 or as a=> 0 the distribution will approach a Dirac delta function &(x — )

The heavy tail behaviour causes the variance of stable distribution to be infinite for a<2 (if a=2 the
distribution is Gaussian).

Stable distributions have been proposed as a model for many types of physical and economic systems
because many large data sets exhibit heavy tails and skewness. Anyway, while non-Gaussian stable
distributions are heavy tailed, most heavy-tailed distributions are not stable.

In order to analyse these series we have fitted the histogram to the first difference, of each series with a
stable distribution (Nolan, 1999), X~S(a.,B,y,0;A), using the program STABLE for univariate data
(http://www.cas.american.edu/~jpnolan). The last parameter A can be 0 or 1 respectively if the characteristic
function is continuous in all four parameters or not. We will consider the first case A=0. A typical situation in
these time series is the existence of a high number of zero values normally in correspondence with weekends or
holidays. To compare the results, we have eliminated from the original series the points where the exchange
rate was unchanged, i.e. the zero value. Table 8 summarizes the fitted parameters using the maximum
likelihood estimation (Nolan, 1997 and 1999); whereas in figs. 9-10 the fit obtained using both approaches is
shown. The other methods implemented in STABLE, i.e. quantile/fractile method and sample characteristic

function, gave similar results.
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Figure 9. Fitted density plot for the Nord Pool Norwegian Krone time series data (blue line): a/Original time series, first
difference; b/ without zero values (23962 values).

As can be observed in figs. 9 and 10, the first Nord Pool time series had a considerable amount of first
differences equal to zero, i.e. no change between one spot price and the successive. This high value makes it
difficult to fit a stable probability distribution (see fig. 9a). On the contrary, in the EUR Nord Pool time series
this problem is not so evident and the stable parameters are quite similar with or without the zero values (see

Table 8 and Fig. 10).
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Figure 10. Fitted density plot for the Nord Pool Norwegian Euro time series data (blue line): a/Original time series, first
difference; b/ without zero values (730 values).

series. The results are summarized in Table 9. The shuffled surrogate time series have all the same stable
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Table 8. Nord Pool data fitted parameters using STABLE (Nolan, 1999).

Data set a B Y )
KRN 0.412 -0.365 0.035 -0.00018

KRN(0) 1.116 0.127 0.242 -0.0514
EUR 1.308 0.164 0.268 -0.068

EUR(0) 1.315 0.173 0.272 -0.069

parameters as the original time series.

Afterwards, the surrogate time series for the Nord Pool in EUR have been compared with the original time

Table 9. Parameters of stable distribution that fit Nor Pool data in EUR/kwh and its surrogates linearly correlated.

Data set o B Y S
EUR 1.308 0.164 0.268 -0.068
SurrQl nl 1.799 0.0397 1.16264 -0.6388E-2
Surr02 nl 1.7831 0.0264 1.13151 -0.61447E-2
Surr03 nl 1.6640 0.0378 1.02906 -0.0210
Surr04 nl 1.7762 0.0036 1.01902 0.1162E-2
Surr05 nl 1.8062 0.0205 1.11834 -0.3311e-2
Surr06 nl 1.6059 0.0011 0.903214 -0.66719E-2
Surr07 nl 1.7837 -0.0093 1.16422 0.30468E-2
Surr08 nl 1.7693 -0.0553 0.998577 0.15710E-1
Surr09 nl 1.7481 0.0135 1.18132 -0.22515E-2
Surrl0 nl 1.7621 -0.0061 1.09915 0.35807E-2
Surrll nl 1.7604 0.0624 1.13694 -0.27875E-1
Surrl2 nl 1.7505 0.0450 1.07224 -0.15495E-1
Surrl3 nl 1.7156 0.0161 1.05419 -0.827819E-2
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Surri4 nl 1.7392 -0.0293 1.18483 0.67472E-2
Surrll nl 1.7039 0.0619 1.00392 -0.15986E-1
Surrl6 nl 1.7894 0.0155 1.10006 -0.69631E-2
Surrl7 nl 1.8059 -0.0368 1.17309 0.87207E-2
Surrl8 nl 1.7869 -0.0213 1.11810 0.60565E-2
Surrl9 nl 17777 0.0038 1.19410 0.75471E-2

By comparing the surrogate data sets it is possible to observe that they have a probability distribution
function (pdf) more similar to a Gaussian (a close to 2) in comparison with original data (o =1.308) and they

have f closer to 0 which mean their pdfs have less skewness.

4.2. Finding the time delay and embedding dimension

Determining the time delay and the embedding dimension is considered as one of the most important steps
in nonlinear time series modelling and prediction. A number of methods have been developed in determining
the time delay and the minimum embedding dimension since the early beginning of nonlinear time series study.

Here we will describe and apply several of them to the foreign exchange time series data sets.

4.2.1. Time delay

The first step in phase space reconstruction is to choose an optimum delay parameter []. Different
prescriptions have appeared in the literature to choose [] but they are all empirical in nature and do not
necessarily provide appropriate estimates:

- First passes through zero of the autocorrelation function: In earlier works (Mees et al., 1987) it was

suggested to use the value of 7 for which the autocorrelation function
C(z) =Y [s(n) = s][s(n+17)—s] (22)

first passes through zero which is equivalent to requiring linear independence.
The application of the zero crossing of the autocorrelation function gives quite high values for both time
series, see Fig. 11.

- First minimum of the Average mutual information: Fraser and Swinney (1986) suggested to use the

average mutual information (AMI) function, /(7), as a kind of nonlinear correlation function to determine when
the values of s(n) and s(n+ 7) are independent enough of each other to be useful as coordinates in a time delay
vector but not so independent as to have no connection which each other at all. For a discrete time series, /(7)

can be calculated as,

I(7)= 2 P(s(n),s(n+1))log,

nn+T

(23)

P(s(n),s(n+71)
P(s(n))P(s(n+17))
where P(s(n)) refers to individual probability and P(s(n),s(n+ 7)) is the joint probability density. Following
the method developed by Abarbanel (1996), to determine P(s(n)) we simply project the values taken form s(n)
versus n back onto the s(n) axis and form an histogram of the values. Once normalised, this gives us P(s(n)).

For the join distribution of s(n) and s(n+ 7) we form the two-dimensional histogram in the same way.
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Figure 11. Correlation f of the Nord Pool time series.
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In general, the time lag provided by /(7) is normally lower than the one calculated with the C(7),

TAMIZ Tcorrel> and provides the appropriate characteristic time scales for the motion. Even though C(7) is the

optimum linear choice from the point of view of predictability in a least square sense of s(n+ 7) from
knowledge of s(n), it is not clear why it should work for nonlinear systems and it has been shown that in some

cases it does not work at all.

4.2.2. Embedding dimension

The dimension, where a time delay reconstruction of the system phase space provides a necessary number
of coordinates to unfold the dynamics from overlaps on itself caused by projection, is called the embedding
dimension, dg. This is a global dimension, which can be different from the real dimension. Furthermore, this
dimension depends on the time series measurement, and hence, if we measure two different variables of the
system, there is no guarantee that the dy from time delay reconstruction will be the same from each of them.

The usual method for choosing the minimum embedding dimension is to compute some invariant of the
attractor. By increasing the embedding dimension used for the computations, one notes when the value of the
invariant stops changing. Since these invariants are geometric properties of the dynamics, they become
independent of d for d> d, i.e. after the geometry is unfolded.

In this work, we have used three methods:

- Saturation of the correlation dimension: The correlation dimension is a measure of the dimension obtained

considering correlations between points. If N is the number of points in the time serie, T is a fixed increment of

time and {xi }Tl = {x(t +1i Z')}I.T=1 the correlation integral is defined as:

i=

)= lim iz 2 0le | ) o
2
where
o) = 1 forx=0 25)

0 otherwise

is the Heaviside function and ||.|| denote the Euclidean norm. The function C(¢g) behaves as a power of € for
small g:

Cle)xe” (26)

the exponent V is called correlation dimension.

The correlation dimension is frequently used to distinguish between chaotic and random behaviour. The
idea behind it is to construct a function C(g) that is the probability that two arbitrary points on the orbit are
closer together than €. The correlation dimension is given by log(C)/log(¢) in the limit e—0 , and N—oo. The
correlation dimension is defined as the slope of the curve C(g) versus €. C(¢) is the correlation of the data set, or
the probability that any two points in the set are separated by a distance €. A noninteger result for the
correlation dimension indicates that the data is probably fractal. In VRA, C(g) is calculated for every

embedding dimension specified in the range and plotted against that range. For the truly random signals, the
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correlation dimension graph will look like a 45-degree straight line, indicating that no matter how you embed
the noise, it will evenly fill that space. Chaotic (and periodic) signals, on the other hand, have a distinct spatial
structure, and their correlation dimension will saturate as some point, as embedding dimension is increased.

For our two time series the saturation does not occur at least until of an embedding dimension of 20, but this

can be due to the presence of noise in the signal.
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Figure 13. Correlation dimension for NOK/MWh time series (top), and EUR time series (bottom).

- False Nearest Neighbours: The method of False Nearest Neighbours (FNN) was developed by Kennel et.

al (1992). In this case, the condition of no self-intersection states that if the dynamics is to be reconstructed

successfully in R4, then all the neighbour points in R4 should be also neighbours in R4+ The method checks
the neighbours in successively higher embedding dimensions until it finds only a negligible number of false
neighbours when increasing dimension from d to d+1. This d is chosen as the embedding dimension.

It was found by Kennel ez al. (1992) that if the data set is clean from noise, the percentage of false nearest
neighbours will drop from nearly 100% in dimension one to strictly zero when dj is reached. Further, it will
remain zero from then on since the dynamics is unfolded. If the signal is contaminated with noise (infinite
dimension signal) we may not see the percentage of false nearest neighbours drop to near zero in any
dimension. In this case, depending on the signal to noise ratio the determination of dr will degrade.

For both time series, the FNN method suggest an embedding dimension of 6, see fig 14. The increase of the

number of FNN after a certain df is an indication of the presence of noise in the signal.
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Figure 14. Embedding dimension using the FNN method. a/NOK/MWh time series; b/ EUR/MWh time series.

- El & E2 Method : The method of FNN has some subjectivity in defining that a neighbour is false since the
values of two threshold parameters have to be defined, Kennel ez. al (1992). To improve this situation, Cao
(1997) developed a similar method, which is based on evaluating the mean value of the distance between time-
delay vectors, EI(d). However, if we look only to the quantity £/(d) we can obtain wrong results in the case of
random signals. For time series data from a random set of numbers E/(d), in principle, will never reach a
saturation value as d increase. But in practical computations, it is difficult to resolve whether the El(d) is
slowly increasing or has stopped changing if d is sufficiently large. In Fact, since available observed data
samples are limited, it may happen that the £7(d) stop changing at some d although the time series is random.

To solve this problem Cao (1997) suggested to consider the quantity £E2(d). Let
yi(d)={s@@),s(i+7),...,s(i+(d —D)z}and y,,, the nearest neighbour of y;(@) in the d-dimensional

reconstructed state space, then it is possible to define:

l N-dt

E*(d)=m ZS
- i=1

i+dr — Snid)+de (27)
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Exdy =24+ (28)
E*(d)
Since the future values are independent of the past values, £2(d), for random data, will be equal to 1 for any
d. However, for deterministic data, £2(d) is certainly related to d, and it cannot be a constant for all d. In other
words, there must exist some d’s such that £2(d)=I. The E1&E2 method depends only on the time delay, and
the embedding dimension is calculated, as in the other methods, when the values of E1 and E2 reach saturation.

Cao (1997) showed that the method does not strongly depend on how many points are available, provided there

are enough and it can clearly distinguish between deterministic and stochastic.
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Figure 15. Embedding dimension calculation for the Nord pool time series. NOK/MWh (top), EUR/MWH (bottom).

Table 10 summarises the results obtained analysing Nord Pool time series. The time delay has been
obtained using the first minimum of the AMI, Eq. (23). The embedding dimension has been computed using
the methods of FNN (Kennel ef al., 1992) and the E1&E2 method (Cao, 1997). The results of this last method
can be seen by looking at the value of E2 (fig 15), furthermore it can be also observed that the time series
analysed does not behave as stochastic signals, i.e. E2=1 for all d. Furthermore, both time series have high

dimensionality, dg=7. This high values are in agreement with similar analysis carried out by Cao (2002) for

other economic time series, i.e. daily variations in the British Pound and Japanese Yen/US dollar.

Table 10. Time delay, 7, and embedding dimension, df, found for the Nord Pool data sets.

Dataset |t d; (FNN) d; (E1&E2)
NOK/MWh | 15 7 10
EUR/MWh | 13 6 10
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4.3. Detecting non-stationarity

Broadly speaking a time series is said to be stationary if there is no systematic change in mean (no trend), in
variance, and, if strictly periodic variations have been removed. Most of the probability theory of time series is
concerned with stationary time series, and for this reason time series analysis often requires one to turn a non-
stationary series into a stationary one so as to use this theory. However, it is also worth stressing that the
nonstationary components, such as the trend, may sometimes be of more interest than the stationary residual.

We only report here a relatively simple stationarity test, called space time separation plot (stp), introduced
by Provenzale et al. (1992). The idea below is that in the presence of temporal correlations the probability that

a given pair of state points in the reconstructed state space, {s(t;), s(t;-At), s(t;-2At), ...}, has a distance smaller
than r, i.e. ||Si'5j|| <1, does not depend only on the position of the sate but also on the time that has elapsed

between them. This dependence can be detected by plotting the number of neighbour points as a function of
two variables, the time separation and the spatial distance. In principle, one can create for each time separation
an accumulated histogram of spatial distances. In the case of power-law noises the only points with small
spatial separation are dynamically near neighbours, i.e. the series is non-recurrent in phase space. In this case
the contour curves do not saturate. In the case of stationarity, we will find saturation in the plot.

Figures 16 show the results of the test to the analysed time series. In those graphics the separation time is
represented in the horizontal axis whereas the base 2 logarithm of the separation in space is represented in the
vertical axis. For small Af points are always near neighbours in space, as their time separation increases so does
their separation in space, in principle (Provenzale et al. 1992). Technically we have to create, for each time
separation A¢ an accumulate histogram of spatial distance & We have used the program s#p of Tisean (Kantz
and Schreiber, 1997) which returns level lines for 10%, 20%, ... of the pairs with a given temporal separation
At.

As can be observe the Nord Pool time series saturate, Fig. 16a, 16c but the high frequency exchange rates
do not (Strozzi et al., 2002), fig. 16b and 16d, which gives the indication that Nord Pool time series are more
stationary than other financial high frequency series. The non saturation, a part from the non-stationarity, is an
indication that the data we are analysing has significant power in the low frequency, such as 1/f noise or
Brownian motion. In this case, all points in the data set are temporally correlated and there is no way of
determining an attractor dimension from the sample. A similar situation arises if the data set is too short. Then
there are no pair left after removing temporally correlated pairs. If we regard the problem from a different point
of view, correlation times of the order of the length of the sample (nonsaturating curves) mean that the data

does not sample the observed phenomenon sufficiently (Kantz and Schreiber, 1997).
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Figure 16. a/ Space-time separation plot (stp) of the Nord Pool spot prices (NOK/MWh); b/ Space-time separation plot of
Australian-US dollar foreign exchange time series; ¢/ Space-time separation plot of the Nord Pool spot prices (EUR/MWh);
d/ Space-time separation plot Belgium Franc-US dollar foreign exchange time series .

In Figure 17 we have plotted the space-time separation plot for several of the surrogates time series. As it is
possible to observe, in the case of linear surrogates, the results are very similar to the ones obtained for the real

time series. In addition, the space-time separation plots finds that the series are stationary.
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Figure 17. Space-time separation plot (stp) of the surrogate time series.

4.4. Testing for non-linearity

The former tests using surrogate data sets concerning the Hurst exponent, power spectrum and the stable
distribution give an idea of the characteristics of the original series when compared with their surrogates.
However, we have not tested the original time series for the existence of determinism. For this we need some
parameter that is related with low dimensional determinism in the series. In order to test the null hypothesis that
the series is a linear Gaussian random series with a 95% significance level, we have used the surrogate data sets
for each Nord pool spot prices time series and as parameter, we have considered the error in the nonlinear one
step ahead prediction (Farmer and Sidorowich, 1987). For both Nord Pool time series, the null hypothesis can
be rejected since the prediction error is found to be smaller in the original time series that that of the surrogate
data sets. These results are in agreement with the previous findings of the space time separation plot in which
one can see that the curves saturate which means that the system is in principle not completely stochastic.
However, we have also carried out another test based on time reversal symmetry statistic and in this case the
null hypothesis, i.e. that a linear Gaussian random processes, cannot be rejected since the time asymmetry of
the data was found to be not significantly different from that of the surrogates. These inconclusive results are

typical of financial time series (Strozzi et al., 2002).
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4.5. Recurrence quantification analysis (RQA)

The actual methods developed in non-linear time series analysis assume that the data series under analysis
have reach their attractors and that there are not in a transient phase, that they are autonomous and that their
lengths are much longer than the characteristic time of the system in question. In the case of Nord Pool spot
prices time series these assumptions are not clearly confirmed by the preliminary analysis and it may be useful
to have another procedure to analyse these data.

Eckmann er al. (1987) introduced a new graphical tool, which they called a recurrence plot (RP). The
recurrence plot is based on the computation of the distance matrix between the reconstructed points in the

phase space, i.e. s;={s(?), s(t-7), s(t-27),...s(t+(dg-1) 7},
d; :HSi —st (29)

This produces an array of distances in a NxN square matrix, D, being N the number of points under study.
Once this distance matrix is calculated, in the original paper of Eckmann ez al. (1987), it was displayed by
darkening the pixel located at specific (i,j) coordinates which corresponds to a distance value between i and j
lower than a predetermined cutoff, i.e. a ball of radius ¢ centered at sj. Requiring & = &, the plot is symmetric
and with a darkened main diagonal correspondent to the identity line. The darkened points individuate the
recurrences of the dynamical systems and the recurrent plot provides insight into periodic structures and

clustering properties that are not apparent in the original time series.

4.5.1. Selection of the threshold or cutoff value ¢

A crucial parameter of a recurrence plot is the threshold . If € is chosen too small, there may be almost no
recurrence points and we will not be able to learn about the recurrence structure of the underlying system. On
the other hand, if € is chosen too large, almost every point is a neighbour of every other point. A too large ¢
includes also points into the neighbourhood which are simple consecutive points on the trajectory. Hence, we
have to find a compromise for the ¢ value. Moreover, the influence of noise can bring us to choose a larger
threshold, because noise would distort any existing structure in the RP. At higher threshold, this structure may
be preserved. Several “rules of thumb” for the choice of the threshold € are present in the literature between
them (Marwan et al., 2007):

a/ it should not exceed 10% of the mean or the maximum phase space diameter (Koebbe and Mayer-Kress,
1992; Zbilut and Webber, 1992)

b/ it should be such that the recurrence point density in RP is approximately 1% (Zbilut ef al., 2002)

¢/ in order to avoid problem related to noise, € has to be chosen such that it is five time larger than the
standard deviation of the observational noise, i.e. €>5c (Thiel et al., 2002)

Nevertheless, the choice of e depends strongly on the considered system under study.

In Fig. 20 we have plotted the RP for both Nord Pool time series. We choose the 10% of the maximum
phase space diameter as cutoff value. Several regime shifts are evident in both time series. A regime shift can

be identified by squares structures of points separated by empty spaces (Zaldivar et al. 2007). However, in spite
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of the differences, it is not evident how to connect the RPs with important facts in the dynamic of the

underlying process. For doing this we need recurrence quantification parameters provided by RQA.
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Figure 20 a). RP for NOK/MWh 1=15, dg=10, =40 (left) and for EUR/KMh t =13, dg =10, =10 (right)
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Figure 21. RPs of linear Gaussian surrogates: a/ NOK/MWh t=15, dg=10, e=40; b/ EUR/KMh t =13, dg =10, e=10. RPs of
shuffled surrogates: ¢/ NOK/MWh t=15, dg=10, e=40; d/ EUR/KMh t =13, d; =10, e=10.

In fig 21 we have plotted the RPs for Gaussian linearly correlated and shuffled surrogate time series,
respectively. Looking to fig. 20a and 20b, it can be observed that RPs of linear surrogate are qualitatively
similar in the structure as those of the real time series, whereas RPs of shuffled data have no particular
structures, see fig. 21c and 21d. RPs are then a tool for detecting correlations in the dynamics, but the question
on how quantifying these RPs arises. This is necessary in order to distinguish, for example figures such as 20
and 21.

4.5.2. Quantification of the Recurrence Plots

Zbilut and Webber (1992) developed a methodology called Recurrence Quantification Analysis (RQA) with
the aim of quantifiying RP’s structures. As a result, they defined several measures of complexity to quantify the
small scale structures in RP. These measures are based on the recurrence point density and the diagonal and
vertical line structures of the RP. A computation of these measures in small windows (sub-matrices) of the RP
moving along the main diagonal yields the time dependent behaviour of these variables (Weber and Zbilut,
1994). Some studies based on RQA measures show that they are able to identify bifurcation points, especially
chaos-order transitions (Trulla et al., 1996). The vertical structures in the RP are related to intermittency and
laminar states: those measures quantifying the vertical structures enable to detect chaos-chaos transitions
(Marwan et al., 2002). The measures to quantify complexity of RPs are the following:

a/  Measures based on recurrence density

%recurrence (RR) is the percentage of darkened pixels in recurrence plot:

1 N
RR(¢) :FZR“ (&) (30)
0=l
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where R j (&) is one if the state of the system at time I and the one at time j have a distance less than &

and zero otherwise.

It is a measure of the density of recurrence points in RP. Note that it corresponds to the definition of the
correlation integral, Eq. (24), except that the points of the main diagonal usually are not included.

b/ Measures based on diagonal lines

Let P(g,l) be the histogram of diagonal lines of length 1. If we assume we have obtained the right value of €

then we can consider P(&,/) = P(/) . Processes with uncorrelated or weakly correlated behaviour cause none

or very short diagonals, whereas deterministic processes cause longer diagonals. It is called %determinism

(DET) the ratio of recurrence points that form diagonal structures (of at least length /,,;,) to all recurrence points

N
1Pl
DET == —— 31)

D 1P(l)

%determinism (DET) is then the percentage of recurrent points forming diagonal line structures. If 1, =1
the determinism is one. For the choice of /,;, we have to take into account that the histogram P(l) can become

sparse if L, is too large, and, thus, the reliability of DET decreases.

Another RQA measure considers the length L . of the longest diagonal line found in the RP, or its

X

inverse, the divergence (DIV)

L. = max({l ; }IN:’] ) , respectively DIV = LL (32)

max

where N, = Z P(!) is the total number of diagonal lines.
I

These measures are related to the exponential divergence of the phase space trajectory. The faster the

trajectory segments diverge, the shorter are the diagonal lines and the higher is DIV.
The measure entropy (ENTR) refers to the Shannon entropy of the probability p(/) = P(/)/ N, to find a

diagonal line of length I in RP.

N
ENTR ==Y p(l)In p(]) (33)

I=liy

ENTR reflects the complexity of the RP in respect of the diagonal lines. For uncorrelated noise the value of
ENTR is rather small, indicating its low complexity.

Trend is a measure of the paling recurrence points away from the central diagonal. It is a linear regression
coefficient over recurrence point density of the diagonals parallel to main diagonal as a function of the time
distance between these diagonals and the main diagonal. It provides information about non-stationarity in the
process, especially if a drift is present in the trajectory. Trend will depend strongly on the size of the window

and may yield ambiguous results for different window sizes.

¢/ Measures based on vertical lines
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We can find vertical lines in presence of laminar states in intermittence regimes. Let the total number of
vertical lines of length v in RP is given by the histogram P(V) and, analogous to the definition of the

determinism, the ratio between the recurrence points forming the vertical structures and the entire set of

recurrence points can be computed:

N
z vP(v)
LAM =5 (34)

Z vP(v)

This it is called /aminarity. The computation of LAM is realised for those v that exceed a minimal length
Vmin- LAM represents the occurrence of laminar stares in the system without describing the length of these
laminar phases. LAM will decrease if the RP consists of more single recurrence points than vertical structures.

The average length of vertical structures is given by

N
z vP(v)
IT =——— (35)
2P
V=Vinin

and is called Trapping Time. TT estimates the mean time that the system will abide at a specific state or how
long the state will be trapped.

In contrast to the RQA measures based on diagonal lines, these measures are able to find chaos-chaos
transitions. Since periodic dynamics the measures quantifying vertical structures are zero, chaos-order
transition can be identified (Marwan et al., 2002).

For a recent overview of the quantifying techniques and their applications, the reader is referred to Marwan

et al. (2007).

4.5.3. Analysing the complete time series
In order to check if RQA measures are able to distinguish between real data and their surrogates (linear

Gaussian processes) we calculated all of them for both. The results are summarized in Tables 11-12 for

NOK/MWh and EUR/MWHh time series, respectively.
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Table 11. RQA measures for NOK/MWEk original time series ant its surrogates linear correlated.

Data set | %recur | %deter | maxline | entropy | trend | % laminar | TrapTime
Bpr 16.095 67.13 3545 8.593 |-8.687| 69.994 308.044
Surr001 8.150 6.129 4808 6.740 | 2.306 1.796 123.511
Surr002 1.926 4.521 1355 4913 |-0.142 0.000 -1
Surr003 2.807 8.026 4808 6.028 |-1.616 0.000 -1
Surr004 | 30.218 | 36.309 4808 7.994 |-3.360| 35.521 214.805
Surr005 1.735 13.216 1844 6.117 |-0.983 0.055 110
Surr006 1.007 | 32.018 1178 6.287 |-0.752| 16.980 166.134
Surr007 4.785 13.279 2674 6.895 |-0.802 7.533 153.511
Surr008 | 14.122 | 17.880 4350 7.357 |-4.479 9.293 154.815
Surr009 5.934 13.528 3130 7.195 |-2.458 6.301 159.498
Surr010 1.193 5.900 1064 4.696 |-0.677 0.347 119.500
Surr011 4.860 51.638 4808 7.918 |-1.542| 52.444 266.162
Surr012 | 31.899 | 52.675 4808 8.415 [12.407| 54.522 218.168
Surr013 4.795 9.417 4808 6.880 | 0.524 0.724 143.393
Surr014 5.725 9.169 4154 6.783 |-2.980 1.774 144.963
Surr015 4.972 6.340 2370 6.606 |-2.341 1.720 114.988
Surr016 | 18.050 | 23.404 4808 7.678 |-4.183| 12.845 161.470
Surr017 | 10.846 | 43.188 4614 8.799 |-7.222| 38.298 338.899
Surr018 4.956 8.523 4808 6.596 |-2.654 3.484 141.553
Surr019 6.323 4.462 4808 6.184 |-1.989 0.375 114.208
Trapping Time = -1 means that no vertical lines were found.

Table 12. RQA measures for EUR/MWk time serie ant its surrogates linear corelated.

Data set | %recur | %deter | maxline | entropy | trend | % laminar | TrapTime
Beur 7.12 35.33 2094 7.658 |-4.587 33.94 263.525
Surr001 12.524 3.665 3340 6.355 |-6.259 2.539 149.367
Surr002 1.643 5.894 2238 5.270 |-1.100 1.872 119.367
Surr003 3.840 1.397 2150 4.533 |-0.998 0.000 -1
Surr004 4.377 1.105 1324 3.970 |-0.286 0.000 -1.000
Surr005 | 10.677 1.825 4187 5.730 |-5.483 1.527 126.613
Surr006 8.658 18.813 4826 7.538 |-5.638 9.854 146.364
Surr007 0.491 3.888 690 2.807 1-0.346 0.000 -1.000
Surr008 | 23.790 | 11.105 4826 7.509 |-7.639 9.252 162.159
Surr009 | 30.269 | 10.831 4826 7.393 |-1.830 7.108 151.053
Surr010 | 20.536 4.700 4826 6.845 |-7.466 6.416 150.611
Surr011 2.336 3.777 1888 5.094 |-1.160 1.529 134.161
Surr012 3.715 1.475 3517 4.059 |-1.627 0.108 117.250
Surr013 4.994 3.736 3721 5.972 |-3.343 1.886 135.457
Surr014 | 21.649 9.020 4826 7.162 |-2.900 9.664 154.810
Surr015 | 20.052 8.142 2669 7.247 |-4.243 4.171 146.484
Surr016 6.811 5.384 3998 6.574 |-4.098 0.758 125.312
Surr017 3.161 4.113 1964 5.641 |-2.076 0.715 131.650
Surr018 7.809 3.369 2429 6.204 |-0.473 2.766 132.437
Surr019 | 12.185 1.330 4826 5.429 | 1.503 0.088 125.600
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By looking to Tables 11-12 we can observe that %recurrence, maxline, entropy, trend or Trapping Time
parameters cannot distinguish, with a 95% of confidence, between a linear gaussian dynamic and the dynamic
behind the financial time series. Of course this does not implies that are not useful for their quantification, but
only that the values of the parameters are in some case higher and in other cases smaller than those of the
original time series. On the contrary, using %determinism, %laminarity we obtain values which are always
smaller for surrogate data in comparison with original data sets. The fact that these two parameters are able to
distinguish between the original time series and the surrogate time series points toward the explanation that the
original series have more diagonal and vertical lines, and therefore their state remain near or at the same place
longer in time more often than for their surrogate linear Gaussian process and that they posses a different
decaying of the autocorrelation function. It could be interesting to generate surrogate data using stable
distributions and then compare the values of RQA parameters.

If we apply RQA to shuffled surrogates, the RQA measures do not detect any structure giving for example

%determinism, %recurrence and %laminarity equal to zero for all cases.
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Figure 22. NOK/MWh (top) and EUR MWh (bottom) and the dates from Tables 1-3

4.5.4. RQE analysis

Let now compute RQA measures on a moving window. In this way, we obtain a time dependent profile of
RQA measures. We would like to see if RQA measures are able to detect some events that are not clear from a
direct inspection of the time series. For example we are interested to observe if some changes in the RQA
parameters occur in correspondence of the entry of a new country in the Nord Pool (Table 1) or in
correspondence with the starting of the deregulation processes (Table 2), or in correspondence with dry and wet
years (Table 3). Figure 22 shows the two Nord Pool time series plotted with the dates or periods indicated in
Tables 1-3, whereas in Figs. 23-24 the behaviour of RQA parameters is plotted with a moving window of one

month shifted of one month for NOK/MWh and EUR/MWHh, respectively.
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Figure 23. Nonlinear metrics of the Nord Pool spot prices time series in NOK/MWh: Values are computed from a 720 point
window (one week), data are shifted 720 points. RQA parameters: T =15, dg=10, distance cutoff: max. distance between
points/10, line definition: 100 points (~4 days). Vertical lines correspond to the following dates: 1* January 1993, 1*
January 1996, 29™ December 1997 and 1% July 1999 (see historical background).
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Figure 24. RQA measures of EUR/MWh: Values are computed from a 720 point window (one month), shifted of 720
points. RQA parameters: t =13, dg=10, distance cutoff: max. distance between points/10, line definition: 100 points (~4
days). Vertical lines correspond to the following dates: 1% October 2000, 5™ October 2005 (see historical background).

By looking at Figs. 23-24 we can observe a qualitative agreement between the RQA measurements:
%Y%recurrence, %determinism, %laminarity and trapping time, for both time series. Furthermore, most of the

times, it is possible to observe an inflection in correspondence of the entrance of a new state in Nord Pool (red
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lines in Figs. 23 and 24 and Table 1). These lines also sometimes coincide with the starting of deregulation
processes in other countries (see Table 2). However, there is no clear evidence and also inflections are visible
in other parts of the time series.

In addition by looking at the RQA parameters (%orecurrence, %determinism, %laminarity and trapping
time) we can observe that, in correspondence of dry periods (yellow periods), the parameters tend to have
smaller values and/or a negative trend. This is more clear in the first time series where hydroelectric power was
more important for the Nord Pool. In these dry periods, due to the high dependence from the oil, the volatility
of the price increases.

It is well-known that high volatility periods are those in which it is more difficult to make forecast. Higher
%determinism and %laminarity mean that the states of the system stay closer in time for longer periods
forming diagonal or vertical segments in RP. Then we can assume that higher %determinism or %laminarity
implies smaller volatility. To study the relationship with volatility, we have compared the profiles of these
quantities with the inverse of standard deviation between 0 and 100 (see figs. 25-26). The main difference
between %determinism and %laminarity is that, in the periods of high volatility, %laminarity reaches zero

values which gives a more clear signal of volatility periods.
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Figure 25. Inverse of standard deviation and %determinism (top) and %laminarity (bottom) for NOK/MWh
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Figure 27. RQA measures of EUR/MWh: Values are computed from a 720 point window (one month), shifted of 720

points. RQA parameters: [J=13, dE=10, distance cutoff: max. distance between points/10, line definition: 100 points (~4
days). Vertical lines correspond to the following dates: 1st October 2000, 5th October 2005 (see historical background).

In order to extract more information from RQA measures, we have compared the mean values of
%determinism and %laminarity with the mean values of the inverse of the standard deviation (StDev) during
the periods between changes in weather conditions (for EUR fig 27, left, and fig. 28 left for NOK) and the
periods between the entrance of new states in Nord Pool (fig 27 right for EUR, fig 28 right for NOK). In both
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cases, it is possible to observe that using RQA measures the changes in the means are more evident (the steps
higher) than using standard deviation. Then using the RQA measures it is possible to improve the detection of

changes in the time series analyzed.
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Figure 28. Nonlinear metrics of the Nord Pool spot prices time series in NOK/MWh: Values are computed
from a 720 point window (one month), data are shifted 720 points. RQA parameters: T =15, dg=10, distance
cutoff: max. distance between points/10, line definition: 100 points (~4 days). Vertical lines correspond to the
following dates: 1* January 1993, 1% January 1996, 29" December 1997 and 1** July 1999 (see historical
background).

5. Conclusions

Nonlinear time series analysis has been carried out for the Nord Pool time series. Preliminary analysis
confirms already published work concerning the antipersistence, H<0.5, of these type of data sets. The power
spectral density shows a scaling behaviour typical of financial time series. On the contrary, like in other high
frequency time series such as exchange rates, the saturation in the space time separation plot shows that the
time series may be considered as stationary and hence, the application of the surrogate data tests, that assumes
two kinds of null hypothesis: stationary Gaussian linear process or no correlation at all, is adequate.

Stable distributions have been proposed as a model for many types of physical and economic systems
because many large data sets exhibit heavy tails and skewness. It is possible to observe a clear distinction
between the first period time series in NOK and the second in EUR. In the first case there is a considerable
number of zeros in the first difference of the series that create some problems in fitting the parameters for a
stable distribution, whereas the problem does not exist in the second case. In general terms the series seems to
have long tails and be more similar to a Levy distribution than to a Gaussian one. Also in this case, linear
surrogate data produce different values when fitted with stable distributions being more similar to a Gaussian
(a0 =1.7 instead of 1.3) and having more symmetry, with § closer to 0 than their original series that have more

skew.

46



F. Strozzi [et al.], Application of non-linear time series analysis techniques to the nordic spot electricity market data.

The application of RQA shows some critical points in the series that loosely correspond with some
historical periods; however it is difficult to assign a one to one correspondence. Also in this case some RQA
measures are able to distinguish between linear and shuffled surrogates time series and the original ones. We
have also found a correspondence between %determinism and %laminarity with the inverse of the standard
deviation, therefore, these parameters can give another method to measure volatility in time series analysis. We
have compared the mean values of these three quantities calculated between the periods in which there were
important changes in weather conditions or in correspondence of which there was the incorporation of new
states into the Nord Pool. We have shown that %determinism and %laminarity detect these changes more
clearly than standard deviation and then they provide an alternative measure of volatility.

The future developments of this work will be to find a correlation between market prices (or some related
variable such as volatility) and the likelihood of blackouts. In this work, candidate parameters have been

assessed.
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Abstract. In this work, we have applied Recurrence Quantification Analysis (RQA)
to data sets taken from the Nordic spot electricity market. Our main interest was
in trying to correlate their volatility with variables obtained from the quantifica-
tion of recurrence plots (RP). For this reason we have based our analysis on known
historical events: the evolution of the Nord Pool market and climatic factors, i.e.
dry and wet years, and we have compared several dispersion measures with RQA
measures in correspondence of these events. The analysis suggests that two RQA
measures: DET and LAM can be used as a measure of the inverse of the volatility.
The main advantage of using DET and LAM is that these measures provide also
information about the underlying dynamics. This fact is shown using shuffled and
linear Gaussian surrogates of the real time series.

1 Introduction

The complex behavior of financial time series, which linear stochastic models are not able to
account for [1], has been attributed to the fact that financial market time series are nonlinear
stochastic, chaotic or a combination of both. Even though there is no conclusive evidence of
low dimension deterministic structure, in the last few years nonlinear time series analysis has
expanded rapidly in the fields of economics and finance [2]. This is also due to the fact that
economic and financial time series seem to provide a promising area for the development, testing
and application of nonlinear techniques, and the fact that high frequency financial time series
are readily available [3]. In addition to financial market time series, energy market spot prices
have also been analyzed with several nonlinear techniques.

In [4],[5] the authors established, using Hurst R/S analysis, that the electricity prices are
anti-persistent with a Hurst exponent lower than 0.5, H ~ 0.41. Also the Lyapunov exponents,
a quantity that characterizes the mean rate of separation of infinitesimally close trajectories in
a dynamical system, have been estimated in a recent study [6].

Volatility in financial markets is a dispersion measure that quantifies the degree of uncer-
tainty about the future price. It refers to the degree of unpredictable changes over time of
the price and it may be measured via the standard deviation of the returns (see Section 3).
Simonsen [7] has demonstrated that power market volatility has some features in common with
other financial markets, such as volatility clustering [8] (i.e. large changes tend to be followed
by large changes and viceversa) and fat-tailed distributions, but there are also present some
peculiarities; for example, power markets exhibit volatility levels well above other financial time
series probably due to the fact that electricity cannot be stored efficiently.

In this work, we have applied Recurrence Quantification Analysis (RQA) to data sets taken
from the Nordic spot electricity market. The relationship between RQA measures and some

& e-mail: fstrozzi@liuc.it
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Fig. 1. Spot prices in the Nordic electricity market (Nord Pool) in NOK/MWh from May 1992 until
December 1998.

dynamic features of financial time series; i.e. high frequency exchange rates, was explored in
[9], [10]. Here, our main interest was in trying to correlate the volatility with variables obtained
from the quantification of recurrence plots (RP). We have based our analysis on known histor-
ical events: the evolution of the Nord Pool market and climatic factors, i.e. dry and wet years.
The underlying hypothesis was that the increase in the number of participants in the Nord
Pool market could increase the volatility of the series and that, due to the strong dependence
of hydroelectric power on climatic variability, i.e. dry-wet years, would tend also to provoke
changes in the volatility of the time series. This work is a first step in the direction of exploring
if there exists a correlation between the volatility in electricity prices and the frequency and
intensity of blackouts. Moreover, as volatility is often used to estimate the risk associated with
a financial instrument, we were interested in finding alternative measures such as the ones ob-
tained from the application of Recurrence Quantification Analysis (RQA) [11], which allows the
quantification of the Recurrence Plots (RP) [12]. The results suggest that there are two RQA
measures (DET and LAM [13]) that are able to better detect salient events in comparison with
other dispersion measures. In particular we analyzed the relationship between RQA measures
and different dispersion measures: standard deviation of the time series, of its first differences
and of the returns (i.e. financial volatility). We found a certain degree of linear correlation
between these dispersion measures which is lost if we consider their linear gaussian surrogates
[14]. This opens up the possibility to use these measures to assess the volatility that can take
into account the non-linear dynamics that exists behind the financial data.

2 DATA PROVISION AND HISTORICAL BACKGROUND

We have analyzed hourly data from the Nord Pool system spot prices. The series is divided into
two parts. In the first part, which lasts from 4" May 1992 until 31%* December 1998 and com-
prises 58,392 data points, Fig. 1, the prices are indicated in Norwegian Krone (NOK)/MWh,
whereas in the second time series, which lasts from 1%* January 1999 until 26** January 2007
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Fig. 2. Spot prices in the Nordic electricity market (Nord Pool) in EUR/MWh from January 1997
until January 2007.

Table 1. Nord Pool participating countries and dates of entry.

Countries Date of entry
Norway 1/1/93
Norway and Sweden 1/1/96
Norway, Sweden and Finland 29/12/97
Norway, Sweden, Finland and W. Denmark 1/7/99
Norway, Sweden, Finland, W. & E. Denmark 1/10/00
KONTEK zone (Germany) 5/10/05

and comprises 70,752 data points (see Fig. 2), the prices are expressed in EUR/MWh.

The Nordic electricity market, known as Nord Pool was created in 1993 and it is owned by
the two national grid companies, Statnett SF in Norway (50%) and Affrverket Svensa Kraftnt
in Sweden (50%). The Nord Pool was established as a consequence of the decision in 1991 by
the Norwegian Parliament to deregulate the market for power trading. Between 1992 and 1995
only Norway contributed to the market, in 1996 a joint Norwegian-Swedish power exchange
was started-up and the power exchange was renamed Nord Pool ASA. Finland started a power
exchange market of its own in 1996; it joined Nord Pool in 1997, and on the 15" of June 1998,
Finland became an independent price area on the Nord Pool Exchange. The western part of
Denmark (Jutland and Funen) has been part of the Nordic electric power market since 15 July
1999, whereas the eastern part of Denmark entered after 15¢ October 2000. On 5" October 2005
the German area KONTEK was added in the Nord Pool exchange market. Table 1 summarizes
the historical evolution of the Nord Pool.

The spot market operated by Nord Pool is an exchange market where participants trade
power contracts for physical delivery the next day, and is thus referred to as a day-ahead mar-
ket. When no grid congestion exists there will be a single identical price across all the area.
However, when there is insufficient transmission capacity in a sector of the grid, grid congestion
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will arise and the market system will establish different ”price areas”. Sometimes the prices are
of the entire Nordic region, sometimes more than one price area exists [15],[16]. In this work
we will only consider the ”system price”.

The variation of the prices in the Nord pool system is well correlated with the variations in
precipitation in Norway and Sweden because of its strong dependence on hydropower genera-
tion. Usually the definition of dry and wet refers to the deviation from normal in TWh (1012
Wh). When this value is negative the correspondent period is considered dry and viceversa wet
when it is positive. Meteorological data analysis reported in [17] found that the 1996 was a
7dry” year, while 1997-2000 was a series of "wet” years, the 2000 was not very "wet” and the
first part of 2001 was quite ”dry” but the autumn was very rainy and 2001 started well with
a water reservoir above the normal level. During the autumn and winter season of 2002-2003
there was a sharp decline of precipitation. This was a rare event with a frequency of only one
in every 100-200 years. This event resulted in the spot prices increasing in 2003. By looking
into Figs. 1 and 2, we can observe that weather conditions have effects on the electricity prices.
However, they are not able to explain all the features of the time series. Moreover spot prices
can increase tenfold during a single hour. These spikes, which are normally quite short lived,
tend to be more severe during high price periods [5].

3 DATA ANALYSIS AND RESULTS
3.1 Volatility measures

Several measures of volatility has been used in literature [5],[18],[19], between them we consider:

Vi = SD(st) (1)
Vo =S8D(sy — 8¢4-1) (2)
Va = SD((st — st—1)/81-1) (3)

where s; and SD refer to the time series values and the standard deviation, respectively. To
calculate standard deviation we used the formula:

§=21.5" (si) and n is the number of points considered. In V3 the argument of SD is an

n
approximation of {n(s;/s;—1) which is often used to measure financial volatility. In order to
compare these quantities with RQA measures we invert and normalize them between 0 and 100
as follows:

IV, =1)V;,i=1.3 (5)

1V; — min(IV;)
max(IV;) — min(IV;)

nlV; = -100,i = 1..3 (6)

Since there is a considerable amount of noise in financial time series, we assume that an
increase of the dispersion measures should be correlated with a decrease of RQA measures that
account for the predictability of the underlying dynamical system.

3.2 Finding the time delay and embedding dimension

The theory of embedding is a mathematical method that allows a temporal time series of
measurements to be represented in a state space ”similar” -in a topological sense- to that
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Fig. 3. Recurrence Plot of NOK/MWh. At = 15, dg = 10, distance cutoff: 40, axis units: hour.

of the underlying dynamical system we are interested in analyzing. State space reconstruc-
tion techniques were introduced in [20],[21]. In nonlinear time series analysis delay coordi-
nates are usually used to reconstruct a representation of the original state space that gen-
erated the dynamics. The state at a time t of a measured variable s(t) is given by S(¢) =
s(t),s(t — At), s(t — 2A¢), ...,s(t — (dg — 1) At), whereas At is the time delay between data
when reconstructing the state space, and dg is the embedding dimension or the dimension
of the space required to unfold the dynamics. Determining the time delay and the embedding
dimension is the first step in nonlinear time series modeling and prediction. The time delay,
for the Nord Pool time series, has been obtained using the first minimum of the AMI (Average
Mutual Information function, [22]) with values of 15 and 13 hours, respectively. The embedding
dimension has been computed using the E1&E2 method [23]. Both series give the same value,
dg = 10. These high values are in agreement with similar analysis carried out by Strozzi et al.
[9] for high frequency foreign exchange time series.

3.3 Quantification of the Recurrence Plots

Eckmann et al. [12] introduced a new graphical tool, which they called recurrence plot (RP).
The recurrence plot is based on the computation of the distance matrix between points in the
reconstructed state space:

dij =[S = ;I (7)

This produces an array of distances in a nxn square matrix, D, n being the number of points
under study. If this distance is lower than a predetermined cutoff, r, the pixel located at specific
(i,7) coordinates is darkened. These points highlight the recurrences of the dynamical systems
and the recurrence plot provides insight into periodic structures and clustering properties that
are not apparent in the original time series. Figures 3 and 4, show the RPs for Nord Pool time
series (generated with VRA, http://www.myjavaserver.com/~nonlinear/vra).

In order to extend the original concept and make it more quantitative, Zbilut and Webber
[24] developed a methodology called Recurrence Quantification Analysis (RQA). Several vari-
ables to quantify RPs have been defined (see for example http://homepages.luc.edu/~cwebber,
http://tocsy.agnld.uni-postdam.de), of which:
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Fig. 4. Recurrence Plot of EUR/MWh. At = 13, dg = 10, distance cutoff: 10, axis units: hour.

— RR (%recurrence): the percentage of darkened pixels in recurrence plot).
— DET (%determinism): the percentage of recurrent points forming diagonal line structures,
which can be defined following [13] as:

S PW)
PEL === P

where P(l) = P(r,l) is the histogram of diagonal lines of length 1, l,,;,, is the minimum
number of points considered to have a diagonal segment and r is the distance cutoff used to
have Recurrence Plot.

— Lynae: the longest diagonal line found in the RP, which is related with the inverse of the
maximum Lyapunov exponent which measures the stability of the system in the state space.

— ENTR: the Shannon entropy that quantifies the structures in RP.

Trend: the measure of the paling recurrence points away from the central diagonal.

— LAM (%laminarity): the percentage of points forming vertical lines, which can be defined

following [13] as: D (vP(v))
>l (VP )

where P(v) = P(r,v) is the histogram of vertical lines of length v, v, is the minimum
number of points considered to have a vertical segment and r is the distance cutoff used to
have Recurrence Plot.

— TT (the trapping time), which estimates the mean time that the system will stay at a
specific state.

(®)

LAM =

(9)

In order to understand if the information obtained from the RQA measures are related to
statistical or dynamical properties, we performed the following test.We recalculated RQA pa-
rameters on randomly shuffled data sets of, respectively, EUR/MWh and NOK/MWh. If we
use the same parameters of Figs. 3 and 4, and, in particular, for the same radius, r, the RR
becomes zero instead of 7.12 (see Table 3) and the RP is empty. If we increase the radius, we
have recurrent points but without any structure Fig. 5. Although the statistical distribution of
the data does not change if we only shuffle them, the RQA parameters do change; however, the
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Table 2. RQA measures for NOK/MWh original time series ant its surrogates.

Data set RR DET Lmpe: ENTR Trend LAM TT

NOK 16.10 67.13 3545 8.59 -8.69  69.99 308
Surro1 8.15 6.13 4808 6.74 2.31 1.80 124
Surroz 1.93 452 1355 4.91 -0.14 0.0 -

Surros 2.81 8.03 4808 6.03 -1.62 0.0 -

Surroa 30.22 36.31 4808 7.99 -3.36 35.52 215
Surros 1.74 1322 1844 6.12 -0.98 0.06 110
Surroe 1.01  32.02 1178 6.29 -0.75  16.98 166
Surrgr 479  13.28 2674  6.90 -0.80 7.53 154
Surros 14.12 17.88 4350 7.36 -4.48 9.29 155
Surrog 593 13.53 3130 7.20 -2.46  6.30 159
Surrio 1.19 590 1064 4.70 -0.68 0.35 120
Surrii 4.86 51.64 4808 7.92 -1.54  52.44 266
Surria 31.90 52.68 4808 8.42 12.41 54.52 218
Surris 4.80 9.42 4808 6.88 0.52 0.72 144
Surria 5.73 9.17 4154 6.78 -2.98 177 145
Surris 497  6.34 2370 6.61 -2.34 172 115
Surrie 18.05 23.40 4808 7.68 -4.18  12.85 161
Surriy 10.85 43.19 4614 8.80 -7.22  38.30 339
Surrig 4.96 8.52 4808 6.60 -2.65 348 142
Surrig 6.32 4.46 4808 6.18 -1.99 0.38 114

RQA measures are not able to identify the statistical distribution of the data. To check if RQA
measures were appropriate to analyze the spot prices dynamics, we have created surrogate time
series of the real data set generated by a Gaussian linear random process with the same FFT
[14]; then we have computed their RQA parameters. The results are summarized in Table 2
and Table 3 for NOK/MWh and EUR/MWHh time series, respectively.

We can observe that the parameters RR, L0, ENTR, Trend and TT could not distin-
guish (with a 95% confidence) between a linear Gaussian dynamics and the dynamics behind
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Table 3. RQA measures for EUR/MWh original time series ant its surrogates.

Data set RR DET Lme: ENTR Trend LAM TT

EUR 712 3533 2094 7.66 -4.59  33.94 264
Surro1 12,52 3.67 3340 6.36 -6.26 254 149
Surroz 1.64 589 2238 5.27 -1.10  1.87 119
Surros 3.84 140 2150 4.53 -1.00 0.0 -

Surroa 438 1.11 1324 3.97 -0.29 0.0 -

Surros 10.68 1.83 4187 5.73 -5.48 1.53 127
Surroe 8.66 18.81 4826 7.54 -5.64 9.85 146
Surror 0.49 3.89 690 2.81 -0.35 0.0 -

Surros 23.79 11.11 4826 7.51 -7.64 9.25 162
Surrog 30.27 10.83 4826 7.39 -1.83 7.11 151
Surrio 20.54 4.70 4826 6.85 -7.47 642 151
Surrii 2.34 3.78 1888 5.09 -1.16  1.53 134
Surria 3.72 148 3517 4.06 -1.63 0.11 117
Surris 499 3.74 3721 6.88 0.52 0.72 144
Surria 21.65 9.02 4826 7.16 -2.90  9.66 155
Surris 20.05 8.14 2669 7.25 -4.24 417 146
Surrie 6.81 5.38 3998 6.57 -4.10  0.76 125
Surriz 3.16 411 1964 5.64 -2.08 0.72 132
Surrig 7.81 3.37 2429 6.20 -0.47 277 132
Surrig 12.19 1.33 4826 5.43 1.50 0.09 126

the Nord pool time series. Of course, this does not imply that those parameters are not useful
for their quantification, but only that the values of the parameters in the surrogate time series
were indistinguishable from those of the original time series. On the contrary, DET and LAM
always produced values which were higher in the original data set when compared with surro-
gate data.

The fact that DET and LAM were able to distinguish between the original and the surrogate
time series can be explained by assuming that there is more structure in the original series,
and therefore the distance in state space remained closer for longer times when compared with
their surrogate linear Gaussian process. It is possible to assume that during high volatility
periods the sensitivity increases, and consequently the forecast becomes more difficult even for
short time horizon. The measures related with the percentage of determinism (DET) of the
time series will tend to decrease. Higher DET and LAM mean that the states of the system
stay closer in time for longer periods, forming diagonal or vertical segments in the RPs. Thus,
we may assume that higher DET values imply smaller volatility.

We have computed these RQA measures inside a moving window. For this analysis we used
a one month moving window shifted by one month (720 points) for both data sets (NOK/MWh
and EUR/MWh).

We were interested in observing if some changes in the RQA parameters make sense in
correspondence of the entry of a new country in Nord Pool (Table 1) or in correspondence
with dry and wet years. To study the relationship between DET and LAM with the dispersion
measures considered (Eq. 6), we have compared their profiles, as can be seen in Figs. 6 and 7,
for the meteorological conditions, where the bold lines are seasonal -3 months- averages of the
plotted quantities. It is possible to observe, for some years, a seasonal behavior with a decrease
during the middle of the year corresponding with spring and summer, with minimum values
for 1996 (dry year) for NOK/MHh series in all measures except for nIV3, Fig. 6. Similarly, for
EUR/MWh series, there is a qualitative agreement being 2001, 2003, 2005 and 2006 the years
for which lower values are found.

To analyze the effect of the entrance of a new state in the Nord Pool on DET , LAM and
on the three dispersion measures, we took the mean values of the measures between the two
successive changes of the composition of the Nord Pool. In this case looking at Figs. 8 and 9 it
seems that, as the number of contries in the Nord Pool system increases, there is a decrease of
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DET and LAM as well as of the inverse of the other dispersion measures, with the exception of
nlIV3. Moreover it is possible to observe that by using the RQA measures, the changes in the
mean values are more evident (the steps are higher) than using the other dispersion measures.
However, it is evident that these effects could not have been discovered a priori without the
historical knowledge. In any case, this behavior suggest that volatility is influenced by external
events and that high values of volatility correspond to low values of DET and LAM.

The determination coefficient R?, which measures the degree of linear correlation between
DET and LAM and the dispersion measures given by Eq. 6, is presented in Table 4. There
is a high linear relationship between DET and LAM, with a determination coefficient R? of
0.88 and 0.89 for NOK and EUR, respectively. The linear relationship between these values
and the inverse of the dispersion measures is lower. However the R? values between nIV; (the
normalized inverse of the standard deviation) and DET are 0.47 for both series. For the case of
LAM we obtain 0.45 and 0.58 for EUR/MWh and NOK/MWh, respectively. The determination
coefficient decreases to 0.25 for nIV5 and is practically zero for n/V3. Also, as seen in Figs. 6-9,
this measure of the volatility is less correlated to the others since it is defined in relative terms
(see Eq. 3).

The same treatment, as applied to the linear gaussian surrogates of Nord Pool time series,
produces a decrease of the linear correlation, see Table 5. There is a decrease in R?: 0.56 and

Table 4. Determination coefficient R? between dispersion measures DET and LAM.

EUR/MWh NOK/MWh

LAM -DET 0.89 0.88
nlVi- DET 047 0.47
nlVa- DET 0.25 0.25
nlVs- DET  0.02 0.10
nIVi- LAM  0.45 0.58
nIV>- LAM  0.26 0.30

nlVsz- LAM 0.02 0.12

2007
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0.67 compared with 0.89 and 0.88 between DET and LAM. The same occurs for nlV;,whereas
the correlations remain practically the same for nIVs and nlVs.

It seems that DET and LAM quantify the volatility related to the underlying nonlinear
dynamics in these series, whereas this effect decreases when we use surrogates, in particular the
linear correlation between DET, LAM and nlV;.

In addition, when we compare the results (Figs. 10 and 11) with the historical data (Figs. 7
and 9) we can observe that DET, LAM and nIV; show no seasonal pattern, and the continuous
decrease present in Fig. 9 has disappeared.
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Table 5. Determination coefficient R? between dispersion measures DET and LAM. Mean values on
19 surrogate data sets.

EUR/MWh NOK/MWh

LAM -DET 0.56 0.67
nlVi- DET 0.18 0.16
nlVo- DET 0.21 0.27
nlVs- DET 0.09 0.08
nIVi- LAM 0.25 0.29
nlVa- LAM  0.21 0.32
nlVz- LAM 0.08 0.09

4 CONCLUSIONS

Nonlinear time series analysis and, in particular, Recurrence Quantification Analysis has been
carried out for the Nord Pool time series, the goal being to analyze and characterize them using
RQA measures. In order to assess the results, we have used historical information in our analy-
sis. Particularly, we were interested in studying the reasons for the high volatility found in these
series [7] and in finding RQA measures that could provide additional results to complement
standard dispersion measures (see Egs. 1- 3).

As a first step, we have compared the RQA measures of the original time series with two
types of surrogate series: shuffled and linear Gaussian with the same FFT. We have observed
that RQA measures do not characterize the probability distribution of the data, because the
shuffled and the real data have the same mean and variance, but different values of RQA
measures. In addition, we have found that two RQA measures: DET and LAM are able to
distinguish between real and linear Gaussian surrogate with 95% of confidence. For this reason
and because of the hypothesis that high volatility can imply small DET and LAM, we have
compared them with the inverse of the normalized dispersion measures given by Eq. 6 on a
one month moving window translated of one month. We have found that these measures are
correlated with the inverse of dispersion measures that are used to evaluate the volatility of
financial time series, see Table 4. We have found a qualitative agreement (see Fig. 6 and Fig.
7) from the point of view of high and low values corresponding to wet and dry periods and
a general decrease of the measures with the entrance of new countries in the Nord Pool (Fig.
8 and Fig. 9). The linear correlation between these measures decreases for the linear gaussian
surrogates (see Table 5)as well as the agreement with historical events. We have observed that
DET and LAM provide an alternative measure of dispersion of a financial time series that take
into account the underlying dynamics. To see if the RQA measures have some advantages in
comparison with the other dispersion measures (Eq. 6), we have observed that DET and LAM
show more pronounced jumps between the periods analyzed. This behavior is lost when we
apply the same treatment to surrogate data sets.

In future work we will investigate the correlation between market prices (or some related
variable such as volatility, DET, LAM) and the likelihood of blackouts.

The authors gratefully acknowledge the financial support of the European Commission DG
RTD funded MANMADE NEST Project (Contract No 043363) and of Fondazione Cariplo.
The authors would like to acknowledge Dr. H. Sivonen (NESA) who kindly provided the data
sets analyzed.
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1. Introduction

The complex behaviour of financial time series has been the object of a considerable amount of studies [1,2]. It has
been demonstrated that linear stochastic models are not able to capture properly this complexity and therefore it has
been attributed to the fact that financial markets are nonlinear stochastic, chaotic or a combination of both. Specifically,
in the last decades there has been a considerable amount of discussion about the characterisation of financial time series
using the theory of Brownian motion [3,4], fractional Brownian motion [5], nonlinearity [6], chaos and fractals [7-9], scaling
behaviour [10,11], and self organised criticality [ 12,13]. Most of the tests developed in the area of economic theory provide
evidence of nonlinear dynamics, which may be deterministic or not deterministic. There is no convincing evidence of
deterministic low-dimensionality in price series [14,15], and the claims of low-dimensional chaos have never been well-
justified [16,17,11]. Nevertheless, in the last few years nonlinear time series analysis has expanded rapidly in the fields of
Economics and Finance. This is also due to the fact that economic and financial time series seem to provide a promising area
for the development, testing and application of nonlinear techniques [18] and the fact that high frequency financial time
series are readily available.

Among these time series, energy spot prices have been analysed with several nonlinear techniques. Weron and
Przybylowicz [19] studied the electricity prices using Hurst R/S analysis and showed anti-persistent behaviour with a Hurst
exponent lower than 1/2. Using another technique, the average wavelet coefficient method [20], a Hurst exponent with
value H = 0.41 has been obtained which is in agreement with other energy spot price time series. The question of modelling
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electricity spot prices has also been addressed by several researchers. Because of the high volatility in Nord Pool electricity
prices, Bystrém [21] applied extreme value theory to investigate the tails of the price change distribution and then used the
peaks-over-threshold method to analyse the data that exceed the threshold. Perell6 et al. [22] proposed a GARCH model for
the spot price. Weron et al. [23] fitted a jump diffusion and regime switching model to Nord Pool spot prices. Vehvildinen
and Pyykkonen [24] developed a stochastic factor based approach to mid-term modelling of spot prices taking into account
climate data, hydro-balance, base load supply and the underlying mechanisms in spot price generation. The model was able
to provide simulated values for the fundamental data, demand and supply information, and pricing strategies.

Here we are mainly concerned with quantifying long range correlations in energy spot price market data in terms of
Hurst exponents. Such a concept has been widely used for the analysis of economic time series at the level of different
quantities. For instance, Simonsen [25] analyses the volatility of the Elspot electricity market. Volatility clustering is
observed, and relations between electricity markets and traditional financial markets are described. Main differences to
traditional financial markets are a general high level of volatility and a possible dependence of the volatility on the price itself.
Reference [26] contains a brief discussion on the application of standard financial tools to electricity markets. In particular,
it appears that the price for electricity is more volatile compared to other commodities because electricity cannot be stored
in an efficient way. The Spanish electricity market is analysed in Ref. [27], using multifractal detrended fluctuation analysis.
The Hurst exponent is estimated to H = 0.16 4= 0.01. Ref. [28] analyses different energy prices, using the detrended moving
average technique. In particular, crude oil, natural gas, heating oil, unleaded gasoline, and propane gas are considered. Focus
is on the decay process of shocks in the return process.

We investigate in detail correlation properties of the Nord Pool electricity market. Some basic features about the time
series are reviewed in Section 2. In addition, we address the question whether such data can be described as a stationary
process, at least on the time scales covered by the data set. To keep the presentation self-contained, we recall in Section 3
some basic facts about the Hurst exponent and algorithms for the estimation of such a quantity. We then compare in
Section 4 results obtained by these different algorithms and evaluate in more detail fluctuation properties related with
such exponents. We check, in particular, if surrogate time series with the same power spectrum but originated by a linear
Gaussian process may have the same Hurst exponent. Some comments on large fluctuations are contained in the conclusion,
Section 5.

2. Data set and time series analysis

The Nordic electricity market, known as Nord Pool (http://www.nordpool.no) was created in 1993 and is owned by the
two national grid companies, Statnett SF in Norway (50%) and Affdrverket Svensa Kraftndt in Sweden (50%). The market
was established as a consequence of the decision in 1991 by the Norwegian parliament to deregulate the market for power
trading. Therefore, between 1992 and 1995 only Norway contributed to the market, in 1996 a joint Norwegian-Swedish
power exchange was started-up and the power exchange was renamed Nord Pool ASA. Finland started a power exchange
market of its own, EL-EX, in 1996 and joined Nord Pool in 1997. Beginning of 15th June 1998, Finland became an independent
price area on the Nord Pool Exchange. The western part of Denmark (Jutland and Funen) has been part of the Nordic electric
power market since 1July 1999, whereas the eastern part of Denmark entered after 1st October 2000. On 5th October 2005
also the German area KONTEK was added in the Nord Pool exchange market.

The spot market operated by Nord Pool is an exchange market where participants trade power contracts for physical
delivery the next day. Thus, it is referred to as a day-ahead market. The spot market is based on an auction with bids for
purchase and sale of power contracts of one hour duration covering the 24 h of the following day. At the deadline for the
collection of all buy and sell orders the information is gathered into aggregate supply and demand curves for each power-
delivery hour. From these supply and demand curves the equilibrium spot prices - referred to as the system prices — are
calculated.

We have analysed hourly data from the Nord Pool system spot prices. The series is divided into two parts. The first part,
from 4th May 1992 to 31st December 1998, comprises 58,392 data points. The prices are indicated in Norwegian Krone
(NOK)/MWh, whereas the second part of time series, from 1st January 1999 to 26th January 2007, comprises 70,752 data
points with prices being expressed in EUR/MWh. We have considered the time series s(t) as well as the corresponding
returns over the time horizon A, defined as

ra(t) = In(s(t)/s(t — A)). (1)

Fig. 1 shows the hourly returns for the two parts of the time series considered. For both parts we have also computed
the distribution function, using the program STABLE for univariate data [29]. The result resembles in each case a stable
distribution S(«, B, v, §) where the fit yields parameter values « = 1.116, 8 = 0.127, y = 0.242, § = —0.05 for the first
part of the time series and « = 1.315, 8 = 0.173,y = 0.272,6 = —0.07 for the second part. Thus the observed distribution
resembles a Cauchy distribution (¢ = 1, 8 = 0) and differs considerably from a Gaussian (¢ = 2).

Stationarity, that means broadly speaking that long time averages like mean values, variances, distribution functions, or
correlation functions do not depend on the initial time, is a property normally required for a statistical analysis. There are
prominent examples in physics, like disordered systems or glasses, which show failure of stationary behaviour because of
intrinsic properties of the dynamics (cf. e.g. Ref. [30] for s simple dynamical model of ageing). Furthermore, economic time
series normally depend on external factors and may suffer from pronounced non-stationary behaviour [31]. It is also worth
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Fig. 1. Left: Hourly logarithmic return, Eq. (1), for the spot prices in the Nordic electricity market (Nord Pool) from May 1992 until December 1998. Right:
Hourly logarithmic return for the spot prices from January 1999 until January 2007.
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Fig. 2. Top: Space-time separation plot of the Nord Pool spot prices (NOK/MWh). Bottom: Space-time separation plot of the Nord Pool spot prices
(EUR/MWh).

stressing that the non-stationary components, such as the trend, may sometimes be of more interest than the stationary
residual. While it is almost impossible to test for stationary behaviour in a rigorous way, we can still check whether on time
scales of interest our data set behaves essentially like a stationary process. We here report on a relatively simple stationarity
test, called space time separation plot [32]. For this purpose one evaluates the probability

P(r, At) = Prob(||x(t + At) — x(t)|| < 1) (2)

that phase space points, separated in time by an interval At, have distance less than r. If the process is stationary and
if At exceeds the correlation time then such a quantity becomes independent of the time lag At and coincides with
the correlation integral which is frequently used for estimating fractal properties of chaotic attractors. Since phase space
coordinates are normally not accessible, one employs standard delay embedding techniques to estimate the required
probability function. We have used the program stp of the Tisean software package [33] which returns level lines of P(r, At)
for P = 0.05, 0.1, 0.15, .. .. Horizontal level lines in such a contour plot indicate the required independence on At and are
thus a signature of a stationary time series. Fig. 2 shows the results of the test of the time series under consideration. In those
graphics, the separation time At is represented in the horizontal axis whereas the the separation in space, r, is represented in
the vertical axis. As can be observed from Fig. 2 the contour plot obtained from the Nord Pool time series consists essentially
of horizontal lines apart from a weak 24 h periodicity. Thus P(r, At) is essentially independent of At. While financial time
series are normally not stationary, the results from space time separation plots demonstrate that electricity market data,
here the corresponding returns, are more stationary than all financial series analysed so far, i.e. foreign market exchange
data sets [31]. Furthermore, it should be noted that the changes in the market, e.g. the appearance of new participants
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(cf. beginning of this section) does not show up as a strong violation of stationary behaviour, at least on the considered time
scales. The results shown in Fig. 2 support the conjecture that the data set we are dealing with is more stationary than other
financial time series. Further evidence comes from the observation that the contour plots do not change qualitatively when
being based on shuffled surrogate data, even though the weak 24 h periodicity disappears, as expected for proper shuffled
surrogates.

3. Long range correlations

An algebraic decay of the autocorrelation function C(t) = (ra(t)ra(t + 7)) ~ |z|7? on large time scales or
the corresponding power law behaviour of the power spectrum S(w) ~ |w|#~! in the low frequency domain may be
characterised in terms of the Hurst exponent H = 1 — /2. A power law scaling of the correlation function on small time
scales can be related with the fractal dimension of the corresponding stochastic process, and both quantities, the fractal
dimension of the process and the Hurst exponent are in general independent quantities [34].

Atool for studying long-term memory and fractality of a time series is the rescaled range or R/S analysis first introduced by
Hurst [35] in hydrology. Mandelbrot [36] argued that R/S analysis is a more powerful tool in detecting long range dependence
when compared to more conventional methods like autocorrelation analysis, variance ratios, and spectral analysis. The range
R of a time series with a finite sampling rate is defined by

R(z) = max(X(t, 7)) — min(X(t, 7)), (3)
where X (t, ) denotes the sum of the deviation of the time series s(t) from its mean value (s), over some time interval T
t+1
X(t,7) =Y (s(6) = ()< (D). (4)
=t

Moreover, S(t) denotes the standard deviation of the time series over the time window t. Computed for different sizes of
the time window, the rescaled range R(7)/S(7) shows a power law scaling

R()/S(z) ~ " (5)

with exponent H. The Hurst exponent is equal to 1/2 for Brownian motion, while H < 1/2 or H > 1/2 indicate anti-
correlated and positively correlated increments, respectively.

Improved methods to estimate the Hurst exponent have been proposed to take care of non-stationary components of
the time series. The detrended moving average (DMA) uses the scaling behaviour of the standard deviation

N

oo (D) = | —— 3 (0) — {5} (€))? (6)

N—r[:r

about a moving average (s).(t) of a time series s(t) of length N for different sizes t of the moving average window (cf.
Refs. [37,38]). The power law scaling of this standard deviation with the window size, opya(t) ~ t!, yields the Hurst
exponent. The generalised multifractal detrended fluctuation analysis (MF-DFA) pursues a similar idea. Here, the standard
deviation is computed with regards to a low-order polynomial fit of the time series. One divides the time series s(t) into n
non-overlapping windows of equal size t. For each window a polynomial fit to the time series is computed. The standard
deviation

N

oo = |+ (50 - @)’ Q

=1

quantifies the variation of the time series s(t) about the polynomial fit sQ"ly (t) where the order m of the polynomials
determines the order of the MF-DFA. Different orders differ in their ability to eliminate trends in the time series; see
e.g. Refs. [39,40,42]. Again, the scaling of the standard deviation with the window size yields the Hurst exponent, opga(t) ~
M. The approach has been generalised by introducing a spectrum of Hurst exponents to take multifractal properties of the
time series into account as well.

4. Results

We now report on the calculation of the Hurst exponent for the Nordic Pool Spot data using some of the methods just
described. First, we have used the standard scaled windowed variance method [41] to estimate the Hurst exponent by linear
regression of In(R/S) versus In(7). Fig. 3 shows the data evaluated separately for the two parts of the time series, currencies
in NOK and in EUR. We obtain a quite pronounced scaling range for the first part of the time series with Hurst exponent
Hyox = 0.44. For the second part the scaling behaviour is slightly less convincing and corrupted by rather large fluctuations.
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Fig. 3. Rescaled range as a function of the window size 7 for spot prices (NOK: left) from May 1992 to December 1998 and (EUR: right) January 1999 till
January 2007 on a double logarithmic scale (arbitrary units). Straight lines indicate a fit to the data with slope Hyox = 0.44 and Hgyg = 0.36, respectively.
The broken line indicates a data fit over a different, smaller interval with slope Hgyg = 0.23.

The actual value for the slope depends on the range for the data fit. One can produce values between Hgyp = 0.36 and
Hgyr = 0.23. Nevertheless, as it can be seen both parts of the time series show anti-persistence, H < 1/2. This has already
been found by several researchers [19,20,22], amongst others. We generated two types of surrogate time series. The first type
is a Gaussian linear stochastic process with the same mean, variance and power spectrum of the original data, the second
is obtained by a random shuffling of the original time series. The Hurst exponent of these two types of surrogates together
with the standard deviation measured over 20 realisations are H,f,g),{ = 0.36+0.07, H,E,SO)K = 0.51+£0.07, HE(LG& = 0.3340.06,

and Héfj) = 0.53 £ 0.06. The Hurst exponents of the original time series differ slightly from the linear surrogate but this
does not mean that the value of H helps us to distinguish between the original time series and their surrogates because of
the quite large errors that come with the numerical values. In fact the exponents seem to be in the range 0.4 £ 0.1 although
the Hurst exponent for the second part of the time series is quite low. For the shuffled surrogate time series we obtain, as
expected, Hurst exponents close to 1/2.

The difference between the two Hurst exponents Hyox and Hgyg is a clear signature of non stationary behaviour most
likely to be caused by the appearance of new market participants. It is thus not surprising that these values differ. On
the other hand one should also keep in mind that the actual error bars for the exponents are likely to be substantial. For
the shuffled time series one would expect a Hurst exponent of H = 1/2 and the obtained values through surrogate data
suggest an error of the order of 0.1. Plain statistical confidence intervals, as usual, may grossly underestimate the error bars.
Furthermore, the Gaussian surrogates which preserve the power spectrum yield results for the exponents which are quite
similar for both parts of the time series. Thus, there could be a feature among the second part of the time series which is
not captured by the autocorrelation function of the data. But in view of the aforementioned error estimates, the deviations
could be a signature of the inaccuracy of the numerical values. The precise numerical value of the Hurst exponent might
only be of limited significance for the quantitative description of dynamical behaviour in real systems with finite length of
time series. However, it may allow to distinguish qualitatively between persistent and anti-persistent dynamical behaviour.
Indeed, our analysis consistently predicts a anti-persistence, i.e. H < 1/2, for the Nord Pool spot market.

As we have seen from the discussion so far, estimators which describe the decay of correlations in a real world process,
such as the Nordic electricity spot market can vary quite substantially. This may limit the accuracy and the interpretation
of those results. One way to resolve this dilemma is to characterise certain trends of the Hurst exponent as some control
parameters are changed, rather than estimating a single value. Since for the electricity spot market there are no controllable
parameters, an ‘educated’ resampling of the given time series is a sensible way to identify trends in the correlation decay. In
particular, we looked at the system price at a certain fixed hour of each day from 1 am to 12 pm. Such a resampling results in
24 different time series of smaller size. Fig. 4(a) shows the power spectrum for the system price at 1 am of each day where
no distinct peaks can be identified. On the other hand, Fig. 4(b) shows the power spectrum for 8 am where distinct peaks can
be seen which correspond to the weekly periodicity of the system price. Indeed, this suggests that the system price during
night hours is not affected by the 7-day interval of our industrial society, whereas there are strong correlations during daily
working hours. This behaviour is summarised in Fig. 4(c) where all 24 power spectra are shown in a three-dimensional
representation.

The Hurst exponents estimated from these power spectra are shown in Fig. 5 where different methods for the
computation of the exponents have been compared. While the different methods yield quite distinct numerical values all
methods essentially produce dips at around 9 am and 6 pm indicating that at these times the correlations in the system price
are strongly dominated by the 7-day interval imposed on the market. Hurst exponents estimated from the asymptotic decay
of the correlation function (diamonds) are practically constant although we expect such a method to be the least reliable
one. The R/S-method (triangles) and the MF-DFA-method (circles) give practically constant results for the Hurst exponents as
well, although with a different value. These features might be attributed to the intrinsic averaging of the respective methods.
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Fig. 4. Weekly periodicities in the system price along different times of the day. Panel (a): Spectrum of the system price at 1 am of each day, panel (b):
spectrum at 8 am of each day, panel (c): three-dimensional representation of the power spectrum for each hour of the day.

Hurst exponents evaluated from the power spectrum (crosses) and those obtained by the DMA-method (squares) display
clearly the daytime dependence. It should be noted that all methods give different results for the estimated Hurst exponent
when applied to a real-world time series, whereas they give identical results when applied to an ideal self-affine process.
Nevertheless, all methods show a dependence on daytime, although at different scales.

5. Conclusion

A perfectly self-affine process can be characterised completely by a single Hurst exponent. However, such a mathematical
property is rarely shared by a real world time series. It is therefore sensible to apply more sophisticated data analysis
tools, one of which is the generalised multifractal detrended fluctuation analysis, as introduced by Ref. [39]. Our analysis of
the electricity system price of the Nordic spot market has shown considerable variations of the Hurst exponent, although
the results are consistent with a mainly anti-persistent time series as shown by the traditional R/S-method applied to the
original time series and to Gaussian linear surrogates with the same mean, variance, and power spectrum. Anti-persistence
is preserved while a shuffled time series yields Hurst exponents close to 1/2.

To illustrate the large fluctuation properties of the Nord Pool data more clearly we may compute a time-depended Hurst
exponent as well. To this end we resample the complete time series in overlapping time windows of different length (1000 h,
5000 h, and 10,000 h) and use the power spectrum to estimate the Hurst exponent of the respective time window. On the
one hand this allows us to estimate the fluctuations of the Hurst exponent on different time scales. On the other hand this
gives an estimation for the accuracy of the Hurst exponent when only a finite number of data points is available. Fig. 6
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shows the results for the system price. Large fluctuations of the Hurst exponent can be seen when computed from windows
of size 1000 h. Fluctuations become smaller as the length of the time window increases; however, even for time windows of
10,000 h fluctuations are still substantial. This indicates that the actual value of H may vary strongly, depending on the time
for which it is estimated. Only time windows of more than 100,000 h give a practically constant Hurst exponent similar to
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the value obtained in Section 3. In other words, for the estimation of the Hurst exponent or any other quantitative measure
of the correlation decay the finite length of the time series may have important consequence on the outcome.

Some of the fluctuations of the Hurst exponents encountered in our analysis reflect rather obvious changes in the market.
For instance, the daily variations described in Section 4 are a feature which could be detected as well by a straightforward
correlation analysis. Thus, such variations are a signature of an incomplete suppression of non-stationary trends of the time
series rather than a true modulation of the anti-persistence. However, such variations indicate that the error bars for the
Hurst analysis are quite substantial and may amount up to 20% of the numerical value. In this context it is quite remarkable
that the rescaled range method yields almost constant values so that such a straightforward approach could be conjectured
to produce more accurate values than some of the more sophisticated techniques. However, one should bear in mind that a
single exponent is not likely to capture the whole complexity of a real world dynamical process.
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Analisi della correlazione tra il prezzo dell’energia ed i disturbi della rete elettrica
della regione nordica.

Sommario

La regione nordica considerata in questo lavoropende Danimarca, Finlandia, Norvegia,
Svezia. La finestra temporale dei dati va da genB800 a dicembre 2006. In questo lavoro
viene analizzata la correlazione tra il prezzo'eedirgia, i disturbi nella rete elettrica ed i
consumi totali. Sono stati considerati i prezzi'dekrgia ottenuti da medie mensili di dati ad
alta frequenza e confrontati con il numero mendiléisturbi e di consumi totali nello stesso
periodo di tempo. Il trattamento preliminare datidnclude I'eliminazione dei trend lineari e
delle componenti cicliche. Dalle serie dei prezsiata ricavata la loro volatilita, e, similmente,
la volatilita dei disturbi e dei consumi totali. ldomande a cui si vuole rispondere sono le
seguenti. Il prezzo dell’energia € correlato al ruondei disturbi in modo da poter usare una
serie temporale per anticipare 'andamento delfiadt prevenire eventi avversi? Nel caso in cui
la correlazione non sia evidente su tutto I'intdovdi tempo considerato, si possono identificare
traslazioni o finestre temporali in cui la corretae aumenti ed in modo che gli estremi di tal
finestre corrispondano ad eventi documentati?

L’'analisi dei dati viene fatta dapprima misurand® dorrelazione lineare e la relativa
significativita applicando il t-test, successivangenalcolando la funzione di correlazione per
vedere se, traslando una serie rispetto all’alrasorrelazione possa aumentare. Infine € stata
applicata la Cross Recurrence Analysis (CRP) peleexziare possibili finestre di correlazione
lineare. La conclusione principale del lavoro e ekeste una correlazione tra la volatilita dei
prezzi dell'energia e quella dei disturbi ed intalare 'aumento della prima é seguita da un
aumento della seconda. L'analisi CRP fornisce tasuimolto interessanti individuando finestre
di correlazione corrispondente ad eventi rilevaatii, tuttavia questi risultati non sono sempre
significativi dal punto di vista statistico e peonfermali servirebbe una quantita di dati
maggiore di quelli disponibili per questo lavoro.

Correlation analysis between faults in the electricity grid and spot prices in the
Nordic region.

Summary
In this work we have analyzed possible correlatioetsveen electricity prices and disturbances
using the data of the Nordic electricity market. Wave used the monthly spot prices,
disturbances and consumption from the beginningapiuary 2000 until the end of December
2006 in the Nordic region, i.e. Denmark, FinlandprMay and Sweden. The preliminary
treatment of the data include the elimination & trends applying the difference operator and
subtracting the regression line. In addition, weeheonsidered the price volatility and similarly
the volatility of disturbances and of total consuimp. The questions we were interested in
addressing were the following: Are the monthly spotes correlated with disturbances? Can
we increase the correlation by shifting the timeeseand can we use the evolution of one time
series to anticipate the behaviour of the otherand prevent adverse events? Can we detect
windows of correlation and find a correspondencehef starting and ending point with some
know events? The main conclusion of this work et th correlation between disturbances and
prices exists. Using the Cross Correlation functenhave found a strong correlation between
the volatility of disturbances and detrended pridest only on windows of six or twelve
months. To analyse the information on a shorteiogenve have applied Cross Recurrence Plot
(CRP) analysis and we have shown that the adveekigfrnal events are able to change the
correlation properties of the time series, in tase the volatility of disturbances and of prices.
However, CRP analysis would need more data polmds the available at the moment. To
improve the results it would be necessary to replgatanalysis using at least daily data of
disturbances and consumption.
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1. Introduction

The electricity market deregulation has causedgstirethe market and in the electricity grids. In
fact, the competition in the electricity marketgéther with its volatility, stressed the electycit
grids with the variation of the flow in the phydiceetwork. The analysis of possible correlations
between prices and disturbances is the goal of ba&kof the MANMADE project and the
subject of this report.

The correlations, once detected, can help in tlewgntion of the disturbances acting on the
electricity price or, at least, in the managemehthe contingency. The forecasting of the
disturbances will be the goal of another Task efgloject.

There are a considerable number of studies in bfature on the properties of the electricity
prices such as the high volatility (Simonsen, 208%0zzi et al 2008), their long range
correlation (Weron and Przybytowicz, 2000; Simons#2®03; Bask et al. 2007). Erzgralstr
al. 2008 checked the long range correlation usinigmdint methods to calculate Hurst exponent.
Volatility measurement based on Recurrent Quaatiftm Analysis were introduced by Strozzi
et al. 2008, but, as far as we know, the relatigmbbtween the prices and grid disturbances has
never been analysed in detail. Nevertheless itoeas previously recognized that there should
exist a relationship (Zhao, 2007).

In this work we have analysed possible correlatioetsveen electricity prices and disturbances
using the data of the Nordic electricity market,iehhare publicly available. We have used the
monthly spot prices, disturbances and consumptimm the beginning of January 2000 until the
end of December 2006 in the Nordic region, i.e. ark, Finland, Norway and Sweden. The
preliminary treatment of the data include the afiation of the trends applying the difference
operator and subtracting the regression line. thitaxh, we have considered the price volatility
and similarly the volatility of disturbances andtofal consumption. Starting from the initial
three time series of prices, disturbances and ecopsan, we have obtained in this way a set of
twelve time series. The questions we were intetlastaddressing were the following:

- Are the monthly spot prices, or one of its relatihe series, correlated with
disturbances, or one of its related time seriessame time windows and with some
shift?

- Do the twelve time series contain new informatioithwespect to the three original
ones?

- Can we increase the correlation by shifting thestearies and can we use the evolution
of one time series to anticipate the behaviourhef other and/or to prevent adverse

events?



- Since some external events could change existinglations or create new ones, can
we detect windows of correlation and find a coroegfence of the starting and ending

point with some historical know events?

To answer the above mentioned questions we hayeoped the following methodology. In
Section 2 we have described the preliminary daatitnent to generate the twelve time series.
As it is well know, the correlation may change i wbserve it on different data windows. For
this reason, we have grouped the twelve time sedesidering their mean (or the standard
deviation in the case of the volatilities) on diéfat time windows overlapped or not. In Section
3 we have studied the correlation matricésthe twelve time series. The main correlations
between prices and disturbances in corresponddneente time windows are underlined. The
analysis of the correlation matrices becomes degpen we calculate their eigenvectors i.e. the
principal components (Jolliffe, 1996) that alloverdifying how many degrees of freedom, i.e.
independent variables, may have a possible modéheotwelve time series. After, we have
checked if we can increase the correlation, slgifine time series in respect to the other, i.e. we
have calculated the Cross Correlation Function (C@ke correlation in respect to a shift
(Orfanidis, 1996). As Marwaet al. (2007) pointed outthe concept of CCF can be extended
using Cross Recurrence Plot (CRP), which is a tioal, by measuring the recurrence of two
time series can calculate the Line Of Synchromra(LOS), and detect if, even a portion of the
two time series, is linearly correlated with a pmitof the other and which translation is

necessary. Finally, in Section 4 the main resultsthe conclusions are presented.



2. Data provision and treatment

2.1 Data Provision

The data sets considered are related with the rigliggtgrid and market in the Nordic region
(see Fig. 1) to detect possible correlations beatwhsturbances and electricity prices. The data
sets are monthly disturbances, the monthly totakomption and the monthly Electricity price
in Denmark, Finland, Norway and Sweden from Jan@8G80 and December 2006. All the data
are public. The disturbances and Total Consumpéion available on Nordic statistics of
electricity faults in the Nordel web page:

http://www.nordel.org/content/Default.asp?PagelD4&21The  Electricity spot prices are

available on the Nord Pool (Nordic Power Exchangejveb  page:

http://www.nordpool.com/nordpool/financial/indexafit
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Nordel is the collaboration organisation of the nEmission System Operators (TSOs) of
Denmark, Finland, Iceland, Norway and Sweden. Thee cduty of the TSOs includes
(http://www.nordel.org):
» Ensuring the operational security of the powereyst
* Maintaining the instantaneous balance between g demand.
* Ensuring and maintaining the short-term and lomgitadequacy of the transmission
system.
* Enhancing the efficient functioning of the eledtsianarket.
Nordel's objectives are (http://www.nordel.org):
+ Development of an adequate and robust transmisgisiem aiming at few large price
areas.
« Seamless cooperation in the management of the sigghgm operations to maintain the
security of supply and to use the resources effityi@across the borders.
+ Efficient functioning of the North-West Europearedticity market with the aim to
create larger and more liquid markets and to imgitoansparency of the TSO operations
« establishment of a benchmark for European transpgref the TSO information.
The market participants can benefit from a commardid wholesale electricity market
consisting of a day-ahead market, intra-day maeet regulating power market. In these
markets power can be traded 24 hours a day thratghe year.
Nordel's co-operation in market facilitation ainesdreate and prepare for an efficient Nordic
wholesale electricity market by balance settlemeahgestion management, market coupling
and monitoring
The main risk factors in the Nordic power and egdrglances are (http://www.nordel.org):
- temperature
- availability of the Nordic power plants
« precipitation
« transmission capacities
The ownership of Nord Poahe Nordic Power Exchanges shared by the Nordic transmission
system operators (TSOs) and Nord Pool ASA. Nord R&A - The Nordic Power Exchange -
is the world's only multinational exchange for tregelectric power. The Nord Pool Group is
headquartered in Oslo, Norway with offices in Sweddnland, Denmark, the Netherlands and
Germany. The vision of a truly pan-Nordic power lexege was realised when Eastern
Denmark was fully integrated into the Nordic marlt October 2000, and all the Nordic
nations operate in a joint market. Western Denmaak integrated into the Nordic Power i\ 1



July 1999. Sweden and Norway became a single pexarange area in 1996. Finland joined
the Nordic Power Exchange area in 1998.

Electric production differs considerably among tHerdic countries. In Norway, nearly all
electricity is generated from hydropower. Swederd dfinland use a combination of
hydropower, nuclear power, and conventional thenpaaver. Hydropower stations are located
mainly in northern areas, whereas thermal powevgiiein the south. Denmark relies mainly
on conventional thermal power, but wind power isviing an increasing part of the demand
for energy.

The power exchange Nord Pool Spot, organizes tlysiqdl trade of electricity, the day-ahead
marketElspotin the Nordic countries and KONTEK in Germany (fh®O area of Vattenfall
Europe Transmission GmbH). Nord Pool Spot is a pathe Nord Pool Group and is owned
20% by Nord Pool ASA and the Nordic Transmissiost&yn Operators: Statnett SF, Svenska
Kraftnat, Fingrid Oyj and Energinet.dk own 20 %eac

Nord Pool Spot provides a market place to produabstributors, industrial companies, energy
companies, trading representatives, large consuaratsTSOs on which they can buy or sell

physical power.

disturbances

disturbances

|:| 1 1 1 1 1 1
2000 2001 2002 2003 2004 2005 2006 2007
VERr

Figure 2. a) Number of disturbances in DenmarkiEfipland(), Norway(.-) and Sweden(-). b)
Total number of disturbances in Denmark Finlandvidgr and Sweden.

2.1.1. Disturbances and Total Consumption
A disturbance may consist of a single fault butah also contain many faults, consisting for

example of an initial fault followed by some secandfaults. A disturbance is defined in
8



Nordel net reportgttp://www.nordel.org) by andutage, forced or unintended disconnection or
failed reconnection as a result of faults in thevpo grid’.

In Figure 2 the number of grid disturbances from Ileginning of 2000 until the end of 2006,
according to months are represented. The grid deresil is the 100-400kV network (Fig. 1).

For all the countries the number of disturbancassiglly greatest during summer period. This
is caused by lightning. Apart from lightening, tbther causes of grid disturbances are other
natural phenomena, operation, maintenance and fauiechnical equipment.

In Figure 3 the monthly Total Consumption (TC) irorNic region except Iceland between

January 2000 until December 2006 is represented.

x 10" &)

TG (GWh)

|:| 1 | 1 1 1 1
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¥y ]
[#]]
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2
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weRr
Figure 3. a) Total Consumption of Denmark(*), Fimd&), Norway(.-) and Sweden(-). b)Total
Consumption in Nordel States exept Iceland.
We did not consider the disturbances and Total wopsion of Iceland because it is not a
member of Nord Pool and we were interested in aiajythe correlation between prices and

disturbances.

2.1.2. Electricity Spot Prices

In Figure 4 the Electricity spot prices of Nordiedton (Nord Pool countries) considered are
plotted. They are hourly data from the Nord Podites spot prices. The series lasts frofn 1
January 1999 until 26January 2007 and comprises 70,752 data pointsr@i), the prices are
expressed in EUR/MWh.
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Figure 4. Spot prices in the Nordic electricity ketr(Nord Pool) from January 1997 to January
2007.

In Figure 4 the system price is represented. Th&ery price is also denoted "the unconstrained
market clearing price", because it is the prica thedances sale and purchase in the exchange
area while not considering any transmission comgfa

In Table 1 it is possible to observe the evolutidrihe composition of Nord Pool during these

years.

Table 1. Nord Pool participating countries and slateentry.

Countries Date of entry of new country
(dd/mmlyy)

Norway 1/1/93

Norway and Sweden 1/1/96

Norway, Sweden and Finland 29/12/97

Norway, Sweden, Finland 1/7/99
and western Denmark
Norway, Sweden, Finland, 1/10/00
western and eastern Denmark

KONTEK (Germany) 5/10/05

As already mentioned, to have a comparable datawsethave excluded Iceland from the
disturbance and total consumption data. In additiorbe consistent with the data frequency of
the other time series — disturbances and totaluwsopson-, we will consider only monthly mean

spot prices, see Figure 5.
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2.2. Data treatment

2.2. 1. Data trend and seasonality

We have treated the data (monthly mean Spot PTiowl Consumption and Disturbances)
subtracting the linear trend and the seasonalitye Trend is calculated using the linear
regression line and the seasonality is removedrattbtg the mean value of the given time
series on the correspondent month of every yeaFidnre 6 the trends and the seasonality

subtracted are represented and, in Figure 7, Hudtirey time series are plotted.

x 104 trends
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=
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§ 40
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5 st i
= I I I I I I
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Figure 6. Subtracted trends and seasonality.
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detrended data
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Figure 7. Detrended data sets.

2.2.2. Data first differences
The difference operator is often applied to elinenthe trend. In Figure 8 we have represented

the first differences of the monthly mean Spotgsiclotal Consumption and Disturbances.

x 10* first differences
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o
a
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>
@ 0
]
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< 1 I 1 I 1 I
2 2000 2001 2002 2003 2004 2005 2006
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Figure 8. First differences time series.

2.2.3. Data Volatilities
Prices volatility in the Nordic electricity markedlsing the same data, it was analysed by Strozzi

et al, 2008. Volatility can be calculated using standatdviation SD, defined as

12



SD(X) =nili(xt —Y)ﬂz, of the spot price returns (S), Total Consumptfdh and
=1l

Disturbances (D):
S(t) — S(t - At) )

Vs=SD( St-a0) 1)
_ . D(t) - D(t - At)

Vp=SD( D - A0 ) (2)
T -T(t-At)

V1=SD( T(-a0 ) (3)

Where4t is 1 month and the window on which we will caldaldghe Standard Deviation will

change from 1 month to 12 months the case of 1 month window we cannot calcudgdedard

deviation because we have only one point thenigncdse we will consider simply:
_ S(t) - S(t-At)

S(t-AY) @
_D(t)-D(t-At)
Vo= D(t - At) ®)
_T()-T@-AY ©
Tt -1

which are linear approximations respectivelylo{S(t)/S(t4t)), In(D(t)/D(t-4t)) andIn(T (t)/T(t
At)) i.e. the logarithm first differences.

In Figure 9 the three volatilities are represerdada window {) of 2 months translated by a
shift (sh) of 1 month.

! DIE_MW_

D 1 1 1

2000 2001 2002 2003 2004 2005 2006 2007
ol i

o]
=

1k i

D 1 1 1

2000 2001 2002 2003 2004 2005 2006 2007

D 1 1 1 1 1
2000 2001 2002 2003 2004 2005 2006 2007

Figure 9. Volatilities of the data sets considg@sietl month)w=2 monthssh=1 month.
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The twelve time series considered in the rest of wWork will be labelled in

Table 2.

Table 2. Notation of the twelve time series anallyt®ff= first differences

according with

Label | Definition Label | Definition | Label | Definition Label | Definition

S Mean monthly| Sdt S detrended | Sfd S first differences Vg w=1 diff(In(S))
spot prices w>1 Volatility of S

D Monthly Ddt D detrended| Dfd D first | Vp w=1 diff(In(D))
disturbancies differences w>1 Volatility of D

T Monthly Total | Tdt T detrended | Tfd T first differences| V+ w=1 diff(In(T))
Consumption w>1 Volatility of T

2.2.4. Time windows and shifts

We will analyse possible correlations between m&gmot prices, Disturbances and Total

consumptions considering real data, de-trended tlesadifferences and volatilities of the three

time series. These correlations will be checkedifierent time windows and for different time

shifts as it is presented in Table 3. The reasonhis choice is based on the natural periodicity

inside one year (seasonality = 3 months, semest@odicity=6 months and the annual = 12

months). The only exception is the window of twontis. This choice is explained by the need

to have the maximum number of points in order tplyEross Recurrence Plot, in fact 2 is the

minimum window to calculate standard deviation. YSD

Table 3. Windows and shifts considered in this work
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3. Time Series Analysis

First, we have studied the linear correlation doedhts i.e. the entries of the correlation matrix
together with its eigenvectors (PCA). Then we habecked if these linear correlation
coefficients could increase by shifting one sevih respect to the other measuring the Cross
Correlation Function (CCF). Finally, we have apglibe Cross Recurrence Plot (CRP) analysis,
which provides a tool: Line Of Synchronization (LQtBat allows to identify time windows in
which two time series are linearly correlated ancepresents an extension of the linear Cross

Correlation Function.
3.1. Correlation matrix

The correlation coefficient matrix represents tloenmalized measure of the strength of linear
relationship between variables. The correlatiorffement R of two variables andY is given
by:

COV(X,Y)

RX.Y)= JVARX)VARY) )
where theCOV/(X,Y)is the covariance matrix, i.e.

> (%, - %)Y, -v)
COV(X,Y) == (8)

n-1
where X andY are the mean of the two variables arid the components number.
The correlation coefficients range from -1 to 1,envalues close to 1 suggest that there is a
positive linear relationship between the data colsynwvalues close to -1 suggest that one column
of data has a negative linear relationship to arotlolumn of data (anticorrelation).Values
close or equal to 0 suggest there is no lineatioelship between the data columns.
We have applied the MATLAB function corrcoef that produces the matrix of correlation
coefficients for all the time series of Table 2 doadeach window and shift indicated in Table 3.
In Table 4 the entries of correlation matrix R ¥orl andsh=1 are presented, the rest, obtained
with the other values off andsh, are in the Appendix 1. To measure the significasiceach
correlation we have applied the t-test. The resgl® matrix fow=1 andsh=1 is presented in
Table 5, and the rest can be seen in Appendix leviry correlation matrbR we have
considered the correlation valu@é,j) higher than 0.7071 (i.e. a determination Gio&nt R >
0.5) with a significance level of 95% i.B(i,j) < 0.05. Such values are highlighted in yellow
Tables 4 and 5. EadR(i,j) value gives the probability of getting a celation as large as the

observed value by random chance, when the truelation is zero.
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Table 4. Correlation matrix Rv=1 month,sh= 1 month. Yellow if |R(i,j)|>0.7071 (R(i%}0.5)

S D T Sdt | Ddt | Tdt | Sfd | Did | T.fd Vs Vo Vi
S 1 -0.2439 | 0.2014 | 0.7317 | -0.1072 | -0.0308| 0.2651 | -0.0307 | 0.0322 | 0.2568 | -0.0484 | 0.0423
D 1 -0.6270| -0.0617| 0.4828 | -0.0885| -0.0491| 0.5390 | -0.0626 | -0.1447| 0.6106 | -0.1054

1 | -0.0227| -0.0311 | 0.2162 | 0.1139 | -0.0941 | 0.3110 | 0.1349 | -0.2259 | 0.3114

S_dt 1 -0.1259 | -0.1649| 0.2908 | 0.0018 | -0.0833| 0.2960 | 0.0267 | -0.0747

D_dt 1 -0.1534 | -0.0086| 0.5122 | -0.0238| -0.0396| 0.5334 | -0.0271

T dt 1 0.2436 | -0.0297 | 0.1539 | 0.2736 | -0.0567 | 0.1535

S _fd 1 -0.0849 | 0.1476 | 0.8607 | -0.0510 | 0.1495

D_fd 1 -0.1962 | -0.1692| 0.8761 | -0.2584

T fd 1 0.1485 | -0.1922 | 0.9896
Vs 1 -0.1373 | 0.1633
Vo 1 -0.2568
vy 1
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Table5. t-test matrix Rv=1 sh=1.

D T S dt | Dt Tdt |[Sfd |Dfd Tfd | Vs Vo Vr

S 0.0263 | 0.0679 | 0.0000 | 0.3347 | 0.7820 | 0.0154 | 0.7826 | 0.7728| 0.0191| 0.6642 | 0.7039
D 1 0.0000 | 0.5798| 0.0000 | 0.4265 | 0.6595 | 0.0000 | 0.5740 | 0.1917 | 0.0000 | 0.3429
T 1 0.8386 | 0.7802 | 0.0497 | 0.3052 | 0.3977 | 0.0042 | 0.2239 | 0.0400 | 0.0042
S _dt 1 0.2567 | 0.1363 | 0.0077 | 0.9868 | 0.4538 | 0.0066 | 0.8104 | 0.5019
D_dt 1 0.1662 | 0.9385 | 0.0000 | 0.8307 | 0.7223 | 0.0000 | 0.8077
T dt 1 0.0265 | 0.7899 | 0.1649 | 0.0123 | 0.6106 | 0.1658
S fd 1 0.4451 | 0.1831 | 0.0000 | 0.6473 | 0.1773
D_fd 1 0.0754 | 0.1262 | 0.0000 | 0.0183
T fd 1 0.1802 | 0.1817 | 0.0000
Vs 1 0.2157 | 0.1402
Vo 1 0.0191
Vr 1
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The significative correlations for all the time wimws,w, and all the shiftssh, are presented in

Tables 6 and 7. The correlation between differieme tseries are highlighted in blue.

Table 6. Significant linear correlations coeffidid{i,j) between data sets for different when

equal tosh

w=1, sh=1

w=3 (seasonal); sh3

3 w=6; sh=6

w=12; 8h=1

S,Sdt (0.7317)
Sfd,Vs(0.8607)
Dfd,Vp(0.8761)

D.T (-0.8154)

Dfd,D(-0.8503)
Tfd, T(-0.8686)
Vp,Dfd(0.7698)

Tdt,T(0.9842)
Vp,T(-0.9057)
Vp,Sdt(0.8138)

Tfd,V+(0.9896) D.T(-0.8594) | Vp,Tdt(-0.9014)
D, Tfd(0.776)
T,Dfd(0.7752)

Table 7. Significant linear correlations coeffidid®(i,j) between data sets for differewtand
sh=1

w=2; sh=1 w=3 (seasonal); sh=1l w=6; sh=1 w=12; sh=1
T,D (-0.7354) T,D (-0.8057) T,D(-0.9044) T,D(-0.7807)

S, Sdt(0.7195) Tfd,Dfd(-0.8010) D.Tdt(-0.7586)
D,Dd1(0.8060)

T,Tdt(0.9904)
Vp-Sdt (0.7567)

The main findings of this analysis are:
 w=1,she1l There are only expected correlations between s (S) and their first

differences (Sdt), the first differences of spates (Sfd), Disturbances (Dfd) and Total

Consumptions (Tfd) and their logarithms (Vg Wr).

* w=2 andw=3. A strong correlation (higher than 0.7) appears betwTotal
Consumption (T) and Disturbances (D).

* W=6. A strong correlation between T and D is still greed both fosh=1 andsh=6.
Moreover, forsh=6 a correlation between their first differencepeqrs, but fosh=1 the
relation is between D and T respectively and tret fifferences of Tand D .

» w=12.the relationships between T and D are confirmea évesh=12 and forsh=1. For
bothshvalues volatility of disturbances starts to beelated with the Spot prices and
Total Consumption de-trended.
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Since we are interested mostly in the correlatibesveen price and disturbances we can
conclude that it exists only fav=12 andsh=12 orsh=1, particularly between the volatility of

disturbances and the mean Spot prices de-trended.

3.2. Principal Component Analysis (PCA)

Principal component analysis (PCA) is a technigseduto reduce multidimensional data sets
(Jackson, 1991, Jolliffe, 2002). It is a way tontliy patterns (linear) in data and then to
compress them by reducing the number of dimensiath®ut much loss of information.

The main steps in the case of m time se X*, X?,...,X™ of length n are the followings. The

mean is subtracted to each time series in ordeave data sets with mean 0:

(9)

where X' =(X1i,...,XL) and X'is the mean value ¢X'. Then the covariance matrix it is

calculated as follows:

COV=(cij),i =1,.m,j=1,..m (10)
where:
zn:(xg —TXXJ —F)
¢, =% (11)
n-1

The eigenvalues and eigenvectorsG®V are calculated too. With the eigenvectors of the
covariance matrix it is possible to extract linkattcharacterize the data. The eigenvector with
the highest eigenvalue is th@incipal componentof the data set. The columns of the
eigenvector matrix and eigenvalue matrix are sorntedrder ofdecreasingeigenvalues. A
subset of the eigenvectors is selected as bastersethe more significant and the others are
cancelled. Usually those eigenvalues which sumO% ®f the sum of all eigenvalues are
considered. The original data matrix without meianepresented in the new basis.

The first principal component is that linear condtian of the original variables which accounts

for the maximum amount of variance in a single line. Iths line of best fit through the data,
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and the residual variance about this line is themiramum for the data set. The second principal
component is that line which is orthogonal to tinst forincipal component and accounts for the
maximum amount of the remaining variance in theadahe first two components therefore
represent the plane of best fit through the datlreinaining principal components are defined
similarly, such that the lowest order componentsmadly account for very little variance and
can usually be ignored. The eigenvalues obtaired fPrincipal Components Analysis are equal
to the variance explained by each of the principamponents, in decreasing order of
importance. The eigenvectors are weightings Ww#dingsthat, when applied to the original
data, obtain principal component scores for theenkadions. A large positive or negative value
indicates a variable that is correlated, eithex positive or a negative way, with the component.
The functionprincompof MATLAB © is applied to calculate loadings, the eigenvahres$ then
the percentage of variance explained by each coemtavhenw andshvary in accordance with
Table 3.

Table 8. Summary of PCA results.

w | sh | #points| #PC to explain at| % variance | #PC to explain at | % variance
least 50% variance| explained | least 90% variance| explained
1 |1 |83 3 63.39 6 91.03
2 1 |82 3 53.08 8 91.08
3 1 |81 3 56.35 8 92.67
6 1 |78 3 62.62 7 92.85
12 |1 |72 2 54.80 6 93.26
3 3 |27 3 56.55 7 91.69
6 6 |13 2 61.44 5 94.38
12 | 12 |6 2 65.63 4 96.75

The main results of this analysis are presente@ainle 8 and in Appendix 2. In the first two
columns there are the valueswfandsh and, in the third, the number of points of eacheti
series considered in calculating PCA. In the foadlhumn the number of principal components
able to explain at least the 50% of variance igdislt seems that an hyper plane of dimension
three can fit the data. This is not so strangeesime built the twelve time series starting from
three of them (S, D, T), but if we are intereste@xplaining at least 90% of variance we can see
that we need always more than 3 principal comp@&umetimes even 8 principal components
are necessary i.e. the original time series ani fingt difference, for example, do not contain

still all the independent information.
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3.3. Cross Correlation Function (CCF)
Cross correlation is a generalization of the catreh coefficient and a standard method of
estimating the degree to which two series are da@ when we shift them one in respect to the
others (Orfanidis, 1996) et we consider two time seri&s andY; where i=1,1,2...n. The cross
correlationr at delayd is defined as

2L = X)(Yy =)
R(X,Y,d)=— (12)

\/iZ(xi —Y)Z\/Z(Yi -Y)?

Where X and Y are the means of the corresponding series. IfLEds computed for all delays

d =-(n-1),..0,1,2,...(n-1) then it results in a crassrelation series of twice the length of the
original series. Fod=0 it becomes the linear correlation coeffici®{K,Y).

We have calculated the cross correlation functmmefvery windoww, and every shiftsh, of
Table 3 using the MATLAB functionxcov In Figure 10 we have plotted only CCFs obtained
using disturbances, spot prices or their modifaratand for which the maximum of correlation

function reach a value of at least 0.5.

In Figure 10 it is possible to observe that theee sagnificant correlations between Spot Prices
and Disturbances (or their modifications) only omaows of 6 or 12 months. The maximum
values obtained are listed in Table 9 together \thih correlation coefficients without delay,

R(0), and the p values of the t-tests.
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Figure 10. CCFs as a function of the delay.
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Vp is correlated with price volatility, price firstifterence and price de-trended but only
considering windows of six or twelve months. Itnst so correlated with the price itself. In
Figure 11 we have plotted the correlation functiesingw=2 andsh=1, between D-T, D-Tfd,
and, in both cases, the correlation becomes hititeer 0.6. Moreover, one can observe the
regularity of the damping of the correlation fuocti which is even more important that the
correlation value itself, because it detects alanity in the dynamic and not only in the static
properties. For these reasons, we have also pltteedorrelation function between D-Sfd and
D-S which, that, even if it never reaches R-valbgger than 0.4, it has a regular oscillating

behaviour in respect to the delay.

Cross Correlation

Cross Correlation

Qross Corelation
\

Qross Corelation
\

Figure 11. Cross Correlation functions for Disturbes withw = 2,sh=1.

3.4. Cross Recurrence Plot (CRP)
CRP is a bivariate extension of RP and was intreduo analyse the dependencies between two
different time series by comparing their joint reemce (Marwan and Kurths, 2002). It can be

considered as a generalization of the linear ccosselation function (Marwaet al. 2007).
If we have two dynamical systems, see Fig. 12, whigjectories are respective@,z where

i=1,...,n, j=1,...,m, the CRP matrix is defined by:
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CR () =0 -[x - ;) (13)
wherei=1, ..., n; j=1, ...m.

A

y()

-

v

»
»

A

x(i)

no embedding .

l Y0

b

i
Figure 12. Cross Recurrence plot (CRP) construction

To quantify the CRP, different measures were inioedl based on the percentage of the number
of recurrent points forming diagonal, vertical othmgonal lines. The lines which are diagonally
oriented are of mayor interest in fact they repmesegments of both trajectories, which run
parallel for some time. The frequency and lengththefse lines are related to a similarity
between the two dynamical systems which cannoteected by the common cross-correlation.
If a time dilatation or compression of one of thaectories is applied then a distortion of the
diagonal lines appear in the CRP. In the follonwamglysis we have applied CRP toolbox which

is free downloadable frommttp://www.agnld.uni-potsdam.de/~marwan/toolbox/

In order to better understand the potentiality lois trepresentation let we consider some

examples. In figure 13 a) we have applied CRP to ifentical time seriessin(7t) then the

24



CRP contains the main diagonal line of identity damined in red). If we consider a time

distortion in the second trajectory in such a whaat it becomesin(7z +sin(L.5t )}then the LOI
will be distorted and the new line is called linesgnchronization (LOS), see Fig 13 b. If we

stretch or compress the second trajectory andcibrnessin(371) , the LOS will be a straight

line but not parallel to the main diagonal, seaufegl3 c). The local slope in CRP corresponds
to the transformation of the time axes of the twosidered trajectories. A time shift between
the trajectories causes a dislocation of the LO8Sndd LOS allows finding the rescaling

function between different time series.
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Figure 12. a) CRP(sinf),sin(rt)); b) CRP(sinft),sin(rt+sin(1.5t)); c) CRP(sint),sin(3t).
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Figure 14: a) CRP (simf),cos(t)), b) CRP (sin(&t),cos(tt)).

In Fig 14 a) the LOS has slope 1 and it deteciseal correlation between the two time series ,

if we shift them by 50 units (which correspondsti@ in the unit considered) then we can

synchronise the system. In Figure 14 b) the selegsct two dynamics shifted and with different
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speeds (the first: sin{8) is faster), we can read this information on t&S slope (higher than
one) and on its translation.

- Detection of changes in the correlation using L@ example

CRP correlation detection can be even more usdfehvihe correlation between two time series
change in time. This is because the techniqueles @tdetecting the window of correlation. In
fact, if we consider two time series in which weaduce a break in the correlation:

- first time series: y1(t)=sim(*t), if t=[-1:0.01:1];

- second time series: y2(t)=cos), if t=[-1:0.01:0] and y2(t)=cost*t/2) if t=[0:0.01:1];

The CRP and the LOS are shown in Figure 15.
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200

20 4

=] 100 120 200

Figure 15. CRP when a change in correlation occurs.

The linear correlation coefficient of the two comel series is R =0.1687 with a t-test with
P=0.0000. Using the window suggested by LOS, 1€1§.109), y2(1:100), R becomes: 0.9048
with P=0.0000. If we calculate R on the remainingrte y1(110:201), y2(101:201-9) R
becomes 0.2851 with P=0.0059

A disadvantage of using CRP is that in order tawba good LOS quality, which means that

information given by LOS show real changes in theadation properties, there is the need of a
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certain minimum amount of points. In this work wavh been able to obtain good LOS quality
using only data withv= 2 andsh=1; in the other cases there were not enough ptanperform
this analysis.

- Line Of Synchronization:: Algorithm and Quality

The Line of Synchronization algorithm is presentetMarwan et al. (2007) and it consists on an
iterative search of recurrent points in CRP stgrfrom the first point next to the axes origin
and then looking in a predefined window. If thisndow does not contain other recurrence
points, it is increased. If there are subsequerurrence points in y-direction (x-direction) the
window size is iteratively increased in y-directipadirection) until a predefined size dx*dy or
until no recurrence points are found.

Moreover Marwan et al. (2007) introduced the folilegvindicator as the LOS Quality:

Q =L*1oo (14)
Nt + Ng

whereNt is the number of target points aNgj the number of gap points. The larger is Q the
better is LOS.

- LOS calculation of real time series.

In this section, using Cross Correlation Functiome, have observed correlations between V
and Sfd, \4 and Sdt, ¥ and Sfd. These time series do not have enoughsptinshow a
reliable Line of Synchronization. For this reasoe have to consider only small windows of
data. The smallest window that we can use=8 in order to calculate standard deviation and
the minimum shift is one. In Figures 16-17 the tisexies considered in these analyses are

plotted as a function of time unit.
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Figure 16. Time series fav = 2,sh=1
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Figure 17. time series fov =2, sh=1.

It is interesting to see that when the price inseeletween 30 and 40 time units, due to the dry
period, the volatility of disturbance increases tadh a certain delay. Looking only to
Disturbances and Spot prices such relationshigsis évident.

In Figure 18 we have represented CRP for the sefi€ssturbancesllf) in respect of the other
time series of Table 2 witlwE2, sh=1) together with their LOS, in order to see ifsitpossible

to extract information about possible correlatidmstween the time series on some time
windows that are not clear from the correlationction. In Figure 19 we have plotted the CRP

considering the volatility of disturbance#) instead of the disturbances themselves.
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Figure 19. CRP of ¥Vp (left) and CRP of Sdt-y(right).

Looking to Figures 18 and 19 it is possible to obsehat many cross recurrent plots have a
white horizontal band between 30 and 40 pointsidsated in Table 10.

Table 10: white band in CRP.
Serie Band points Real date
Sfd_D 30-40 July 02-April 03
VD-D 36-42 January 03- July 03
VS-D 30-40 July 02- April 03
Tdt-D 33-40 October 02-April 03
S-D 33-40 October 02-April 03
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The periods of Table 10 correspond to the oneshiciwthe price increases due to a dry period
and then a high dependence from external sourcesearfyy appeared and probably a change in
the correlation properties. The presence of thdewvhite bands causes, in general, a change in
the properties of LOS because it is not possibl@ntbnear recurrence points and the algorithm
double the step search. This is evident for exanmpfeégure 18 for the first differences of prices
(Sfg in respect of disturbances (D). It seems that ¢beelation properties i.e. the LOS
parallelism to the main diagonal of CRP, chanderaifrossing the band. The same happens for
the correlation between some variables suchSasdt VS Sfd with D. To confirm the
hypothesis that LOS allows in detecting windows hofher linear correlation, we have
compared the correlation of the entire time sesiitls the one obtained using only the portion of
the data in which the LOS is parallel to the maamgdnal R os) and with the one suggested by
the correlation functionRccr) i.e. obtained translating the entire time serfdbthe results are

shown in Table 11.

Table 11. Correlation coefficient for differentrgon of the time seriesis not significative R:
correlation Coefficient of the entire time seriesdawithout shift. Rccpm max correlation
obtained using Cross Correlation Functi®es Correlation coefficient of the portion of the
time series suggested by LOS.

Figure| Q Serie and | R Rccr Interval RiLos Date
total suggested by correspondent
points LOS to the points
considered considered
m) 69.32 | D(1:83); |-0.2692 | -0.2692| D(18:28); 0.3979 | July 01-
S(1:83); S(18:28); (ns) May 02
)] 69.89 | D(1:83); |-0.7354 | -0.7354| D(1:30); -0.8037 | Feb 00-
T(1:83) T(1:30) Sept 01
f) 64.32 | D(1:83); |0.0702 |-0.3529| D(1:30); -0.3953 | Feb 00-
Sfd(1:83) Sfd(1:30) July 02
e) 81.69 | D(1:83); |-0.4119 |-0.6809| D(1:19); -0.7021 | Feb 00-
Dfd(1:83) Dfd(2:20) June 02
March 00
-July 01
d) 80.40 | D(1:83); |0.2429 | 0.6896 | D(1:60); 0.7455 | Feb 00-July 06
Tfd(1:83) Tfd(3:62) May 00-Dec
06
76.4632| VD(1:83) | 0.1545 | 0.4418 | VD(1:35); -0.2248 | Feb 00-Dec 02
Sdt(1:83) Sdt(7:41) (ns)

When, looking to CRP of fig 18-19 a portion of L@&rallel to the main diagonal (listed in
Table 11) detected a window of higher linear catieh (see column 7) in comparison with the
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one calculated using all the points (column 4)har dne obtained shifting the two time series as
the Cross Correlation Function suggested (see FEigrid column 5). Moreover, looking to
Table 11, we can observe that LOS allows identifitime time in which Spot Prices changes for
the starting of the dry period (July 2002) and imak the prices increase due to the dependence
from external sources.

Moreover, as we can see from Figure 17 a spikesiis ¥ollowed by a spike in Y and we can
observe that the two dynamics can be correlated efter the dry period but with a delay.
Looking at Figure 19, after the white band, we dedt the LOS is still parallel to the main
diagonal but with a shift. We have measured theetation coefficients on the intervals
indicated by LOS and we have obtained again andwgment (results not shown) with respect
to considering all the time series, eventually tellif but, perhaps due to the small amount of

points, the correlation values are not significativ

4. Conclusions

In this work we have analysed possible correlatioesveen electricity prices and disturbances
in the Nordic Region (Denmark, Finland, Norway a8weden) from January 2000 until
December 2006. By a preliminary treatment of thredhoriginal time series we have obtained
other nine time series: three without trends, tHimsé differences and three volatilities (Egs. 1-
3). The set of 12 time series is then grouped udiffgrent time windows and translated by
different shifts (see Table 3).

First we have analysed the time series obtaineagusie linear correlation coefficient R. We
have found a strong linear correlations, Rehigher than 0.7, for windows of twelve months
(see Table 6) between the volatility of disturbanaed the de-trended spot price

Applying the Principal Component Analysis to the time series, we have observed that more
than 3 PCs are necessary to explain at least #ted®@ariance, therefore the treated time series
contain independent information in comparison whk first three ones (Disturbances, Spot
prices and Total Consumption).

In Figure 10 we have plotted some Cross Correldfiamctions and we have seen that the linear
correlation between the time series can be incdeak#ting them. The maximum correlation
values obtained are listed in Table 9. We haveddbhat disturbance volatility is correlated with
price volatility, price first difference and de4tieed price, but only considering window of six
or twelve months. Disturbance volatility is not smch correlated with the price itself. In

Figure 11 we have plotted the correlation functibesnveenD-Sfd and D-S which, even if it
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never reaches values higher than 0.4, it has daregscillating behaviour in respect to the delay
and this can be a sign of similarity between the dynamics.

Finally we have applied Cross Recurrence Plot amglyhich gives an extension of the Cross
Correlation Function and it helps to detect portadrthe time series that are linear correlated.
The only problem in performing this analysis is #mount of points necessary. For this reason
we have analysed only the casensf2 (minimum to calculate standard deviation) ahel. In
Table 11 it is shown how, using CRP, higher cotegladata windows are detected. A
relationship between the volatility of Spot pri@esl the volatility of disturbances appears in Fig
17, in which the spike in the price in corresporweaf a dry period is followed, with a certain
delay, by a spike in the disturbances. This catiarias confirmed by CRP representation given
in Figure 19, where it seems that the two timeeseare synchronised before the dry period but
after a delay appears between them. The only disddge of CRP is that we can apply it and
extracting reliable information only if we have ainfmum amount of data. It would be
interesting to repeat the analysis performed is tork using daily data of disturbances and

consumption.
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Appendix 1 Correlation matrices and t-test

- Window=3 (seasonal), shift=3;

R =
1.0000
-0.2593
0.1333
0.6728
-0.2086
0.0817
-0.1413
0.0169
-0.1247
-0.1156
-0.0025
0.0752
P =
1.0000
0.1915
0.5073
0.0001
0.2964
0.6854
0.4820
0.9332
0.5355
0.5658
0.9902
0.7095

-0.2593
1.0000
-0.8154
-0.0508
0.4328
-0.1900
0.0650
-0.5204
0.4788
0.0342
0.0082
-0.0455

0.1915
1.0000
0.0000
0.8014
0.0241
0.3424
0.7473
0.0054
0.0115
0.8654
0.9676
0.8218

0.1333
-0.8154
1.0000
-0.0724
-0.0414
0.2034
0.0331
0.0773
-0.3500
0.0031
-0.1754
0.3753

0.5073
0.0000
1.0000
0.7197
0.8374
0.3090
0.8700
0.7015
0.0735
0.9879
0.3816
0.0538

- Window = 6; shift = 6;

R =
1.0000
-0.4047
0.3100
0.5402
-0.1778
0.2332
-0.2855
0.2637
-0.1955
-0.0971
0.3099
0.3250
P =
1.0000
0.1702
0.3026
0.0567
0.5611
0.4433
0.3444
0.3839
0.5221
0.7524
0.3028
0.2786

-0.4047
1.0000
-0.8594
-0.1892
0.6352
-0.3381
0.2550
-0.8503
0.7665
-0.0158
-0.5359
-0.3012

0.1702
1.0000
0.0002
0.5358
0.0197
0.2585
0.4004
0.0002
0.0022
0.9593
0.0591
0.3173

0.3100
-0.8594
1.0000
0.0219
-0.2717
0.4335
-0.1567
0.7752
-0.8686
0.0018
0.4301
0.5935

0.3026
0.0002
1.0000
0.9434
0.3693
0.1389
0.6091
0.0019
0.0001
0.9954
0.1424
0.0325

0.6728
-0.0508
-0.0724

1.0000
-0.2381
-0.1965
-0.2660

0.0180
-0.1039

0.0357

0.2702
-0.1705

0.0001
0.8014
0.7197
1.0000
0.2318
0.3260
0.1800
0.9291
0.6059
0.8597
0.1729
0.3951

0.5402
-0.1892
0.0219
1.0000
-0.2351
-0.1793
-0.3495
0.3018
-0.1575
0.2447
0.5391
0.0171

0.0567
0.5358
0.9434
1.0000
0.4394
0.5579
0.2417
0.3162
0.6074
0.4203
0.0573
0.9557

-0.20860817
0.43%B81900
-0.041D42034
-0.23811965
1.00@02613
-0.261130000
-0.05865799
-0.24810528
0.05150040
-0.08460304
0.04@70543
0.19910647

0.29646854
0.02813424
0.83143090
0.23083260
1.00001.880
0.18800000
0.78830015
0.21217936
0.79820840
0.6793804
0.84017880
0.32947484

-0.17182332
0.63%r3381
-0.27D74335
-0.23811793
1.00@04916
-0.49160000
-0.124m5172
-0.34@M0417
0.058r0633
-0.26262126
-0.14393194
0.19P293222

0.56014433
0.01972585
0.36931389
0.43945579
1.00000879
0.087190000
0.67810703
0.25893923
0.86818371
0.38634856
0.63912874
0.52182831

-0.1413
0.0650
0.0331

-0.2660

-0.0555
0.5799
1.0000

-0.1939
0.3568

-0.0085

-0.4753
0.0245

0.4820
0.7473
0.8700
0.1800
0.7833
0.0015
1.0000
0.3325
0.0677
0.9665
0.0122
0.9033

-0.2855
0.2550
-0.1567
-0.3495
-0.1291
0.5172
1.0000
-0.5204
0.4549
0.4273
-0.7778
0.2901

0.3444
0.4004
0.6091
0.2417
0.6741
0.0703
1.0000
0.0683
0.1184
0.1453
0.0017
0.3363

0.0169
-0.5204
0.0773
0.0180
-0.2481
0.0528
-0.1939
1.0000
-0.5531
-0.1126
0.5404
-0.3603

0.9332
0.0054
0.7015
0.9291
0.2121
0.7936
0.3325
1.0000
0.0028
0.5760
0.0036
0.0649

0.2637
-0.8503
0.7752
0.3018
-0.3401
-0.0417
-0.5204
1.0000
-0.8924
-0.0864
0.7698
0.2625

0.3839
0.0002
0.0019
0.3162
0.2555
0.8923
0.0683
1.0000
0.0000
0.7791
0.0021
0.3863

-0.1247
0.4788
-0.3500
-0.1039
0.0516
-0.0040
0.3568
-0.5531
1.0000
0.0373
-0.4220
-0.2978

0.5355
0.0115
0.0735
0.6059
0.7982
0.9840
0.0677
0.0028
1.0000
0.8534
0.0283
0.1313

-0.1955
0.7665
-0.8686
-0.1575
0.0532
0.0633
0.4549
-0.8924
1.0000
0.1011
-0.6590
-0.4628

0.5221
0.0022
0.0001
0.6074
0.8631
0.8371
0.1184
0.0000
1.0000
0.7424
0.0143
0.1112

-0.11860025
0.03420082
0.00311754
0.03%72702

-0.084560407
0.03@®40543

-0.008p4753

-0.11265404
0.037134220
1.00@00490
0.04900000
0.10202325

0.56539902
0.86549676
0.98D3816
0.85971729
0.678538401
0.88047880
0.96630122
0.57600036
0.85840283
1.00008083
0.80830000
0.61P82432

-0.09113099
-0.01885359
0.00184301
0.24475391
-0.26251439
0.21:263194
0.42187778
-0.08@17698
0.101016590
1.00@00014
-0.00140000
0.308B0562

0.75243028
0.95930591
0.99841424
0.42030573
0.38636391
0.48562874
0.14830017
0.77910021
0.74D40143
1.00000965
0.99850000
0.31048553

0.0752
-0.0455
0.3753
-0.1705
0.1951
0.0647
0.0245
-0.3603
-0.2978
0.1020
-0.2325
1.0000

0.7095
0.8218
0.0538
0.3951
0.3294
0.7484
0.9033
0.0649
0.1313
0.6128
0.2432
1.0000

0.3250
-0.3012
0.5935
0.0171
0.1929
0.3222
0.2901
0.2625
-0.4628
0.3053
-0.0562
1.0000

0.2786
0.3173
0.0325
0.9557
0.5278
0.2831
0.3363
0.3863
0.1112
0.3104
0.8553
1.0000
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- Window =12; shift =12

R=
1.0000
-0.1224
-0.1710
0.4665
0.5750
-0.3117
-0.5668
0.5599
-0.1739
-0.4327
0.3599
0.4001
P=
1.0000
0.8172
0.7460
0.3510
0.2326
0.5476
0.2408
0.2479
0.7418
0.3915
0.4835
0.4319

-0.1224
1.0000
-0.5911
0.6509
0.6041
-0.4968
0.2140
-0.4577
-0.3629
0.7903
0.4244
0.4273

0.8172
1.0000
0.2166
0.1615
0.2041
0.3161
0.6839
0.3614
0.4796
0.0614
0.4017
0.3981

-0.1710
-0.5911
1.0000
-0.6735
-0.3835
0.9842
0.4892
0.6237
-0.0832
-0.5198
-0.9057
0.0590

0.7460
0.2166
1.0000
0.1425
0.4530
0.0004
0.3247
0.1857
0.8754
0.2905
0.0129
0.9115

- Window =2; shift =1

R =
1.0000
-0.2692
0.1775
0.7195
-0.1748
0.0543
-0.1541
0.0242
-0.0508
0.1353
0.0195
0.0696

P =
1.0000
0.0145
0.1107
0.0000
0.1162
0.6283
0.1669
0.8293
0.6507
0.2254
0.8622
0.5343

-0.2692
1.0000
-0.7354
-0.0689
0.3791
-0.1185
0.0702
-0.4119
0.2429
0.0730
0.1785
-0.1720

0.0145
1.0000
0.0000
0.5385
0.0004
0.2890
0.5306
0.0001
0.0279
0.5147
0.1086
0.1223

0.1775
-0.7354
1.0000
-0.0331
-0.0376
0.2229
0.0249
0.0811
-0.2756
-0.0683
-0.1530
0.3387

0.1107
0.0000
1.0000
0.7676
0.7373
0.0441
0.8244
0.4686
0.0122
0.5419
0.1700
0.0019

0.4665
0.6509
-0.6735
1.0000
0.5149
-0.6494
-0.5304
-0.0414
-0.3383
0.1474
0.8138
0.2562

0.3510
0.1615
0.1425
1.0000
0.2959
0.1628
0.2791
0.9380
0.5119
0.7805
0.0488
0.6241

0.7195
-0.0689
-0.0331

1.0000
-0.2024
-0.1431
-0.2229

0.0175
-0.0808

0.3428

0.1545
-0.0496

0.0000
0.5385
0.7676
1.0000
0.0682
0.1997
0.0441
0.8763
0.4704
0.0016
0.1659
0.6579

0.57803117

0.60414968
-0.383b9842
0.51496494

1.00@04414
-0.441140000
0.09945488

0.07845369

-0.379561049
0.41364368
0.25889014

0.79890205

0.23DH476
0.20413161
0.45800004
0.29991628
1.00003809
0.380290000
0.85D42594
0.8812721
0.4578432
0.418865
0.62020141
0.05949693

-0.17480543
0.374911185
-0.03162229
-0.20:311431
1.00@02039
-0.20390000
-0.02@45048
-0.25980152
0.028r0871
-0.151740372
0.137191166
0.03821482

0.11626283
0.00042890
0.73730441
0.06821997
1.00000662
0.06620000
0.85600000
0.0188925
0.80074367
0.15187400
0.21632969
0.76021841

-0.5668
0.2140
0.4892

-0.5304
0.0954
0.5488
1.0000

-0.1192
-0.1006
0.4843

-0.7498

0.3983

0.2408
0.6839
0.3247
0.2791
0.8574
0.2594
1.0000
0.8220
0.8497
0.3304
0.0861
0.4342

-0.1541
0.0702
0.0249

-0.2229

-0.0204
0.5048
1.0000

-0.2136
0.2398

-0.0919

-0.2885
0.0416

0.1669
0.5306
0.8244
0.0441
0.8560
0.0000
1.0000
0.0540
0.0300
0.4113
0.0086
0.7106

0.5599
-0.4577
0.6237
-0.0414
0.0754
0.5369
-0.1192
1.0000

-0.1739
-0.3629
-0.0832
-0.3383
-0.3796
-0.1049
-0.1006
-0.5067

-0.5067 1.0000

-0.7924
-0.3952
0.1674

0.2479
0.3614
0.1857
0.9380
0.8872
0.2721
0.8220
1.0000
0.3050
0.0602
0.4381
0.7512

0.0242
-0.4119
0.0811
0.0175
-0.2593
0.0152
-0.2136
1.0000
-0.4489
-0.0309
0.3995
-0.0508

0.8293
0.0001
0.4686
0.8763
0.0187
0.8925
0.0540
1.0000
0.0000
0.7826
0.0002
0.6506

0.0679
0.1192

-0.1203

0.7418
0.4796
0.8754
0.5119
0.4579
0.8432
0.8497
0.3050
1.0000
0.8984
0.8221
0.8204

-0.0508
0.2429
-0.2756
-0.0808
0.0282
-0.0871
0.2398
-0.4489
1.0000
-0.0466
-0.2556
-0.1539

0.6507
0.0279
0.0122
0.4704
0.8017
0.4367
0.0300
0.0000
1.0000
0.6778
0.0205
0.1675

-0.432(3599
0.79@B4244
-0.51989057
0.1471748138
0.41862583
-0.43@89014
0.4848B7498
-0.79243952
0.06701192
1.00@01885
0.18850000
0.31:880917

0.3904835
0.06044017
0.29050129
0.78030488
0.41806212
0.38620141
0.33040861
0.06024381
0.89848221
1.00007206
0.72060000
0.54683628

0.13830195
0.07801785
-0.06881530
0.34281545
-0.1541379
0.03121166
-0.09102885
-0.03@A3995
-0.04662556
1.00@0602
0.06a20000
0.02810059

0.22548622
0.51471086
0.54091700
0.00061659
0.15P82165
0.74002969
0.41030086
0.78280002
0.67080205
1.00006910
0.59100000
0.79649578

0.4001
0.4273
0.0590
0.2562
0.7939
0.0205
0.3983
0.1674
-0.1203
0.3123
-0.0917
1.0000

0.4319
0.3981
0.9115
0.6241
0.0594
0.9693
0.4342
0.7512
0.8204
0.5468
0.8628
1.0000

0.0696
-0.1720
0.3387
-0.0496
0.0332
0.1482
0.0416
-0.0508
-0.1539
0.0289
-0.0059
1.0000

0.5343
0.1223
0.0019
0.6579
0.7672
0.1841
0.7106
0.6506
0.1675
0.7964
0.9578
1.0000
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- Window =3; shift=1

R =
1.0000
-0.2857
0.1794
0.6949
-0.2155
0.0994
-0.0842
0.0184
-0.0598
0.1994
-0.0372
0.0954
P =
1.0000
0.0097
0.1091
0.0000
0.0534
0.3771
0.4548
0.8702
0.5959
0.0744
0.7416
0.3970

-Window

R =
1.0000
-0.3463
0.1923
0.6105
-0.2231
0.2116
-0.0266
0.1143
-0.1268
0.2354
0.1002
0.1234
P=
1.0000
0.0019
0.0917
0.0000
0.0496
0.0629
0.8168
0.3190
0.2685
0.0381
0.3827
0.2817

-0.2857
1.0000
-0.8057
-0.0689
0.3557
-0.1463
0.0446
-0.3540
0.2741
0.0571
0.3571
-0.0829

0.1794
-0.8057
1.0000
-0.0396
-0.0401
0.2288
0.0258
0.1020
-0.2768
0.0117
-0.2939
0.3271

0.0097
1.0000
0.0000
0.5413
0.0011
0.1925
0.6924
0.0012
0.0133
0.6129
0.0011
0.4618

0.1091
0.0000
1.0000
0.7254
0.7220
0.0399
0.8194
0.3651
0.0124
0.9175
0.0078
0.0029

=6; shift=1

-0.3463
1.0000
-0.9044
-0.0615
0.4189
-0.2827
0.0008
-0.2796
0.3076
-0.0554
0.4163
-0.0634

0.1923
-0.9044
1.0000
-0.0495
-0.0647
0.2813
0.0437
0.1298
-0.2560
0.0236
-0.4282
0.1258

0.0019
1.0000
0.0000
0.5926
0.0001
0.0121
0.9942
0.0132
0.0062
0.6299
0.0002
0.5814

0.0917
0.0000
1.0000
0.6669
0.5737
0.0126
0.7041
0.2575
0.0237
0.8377
0.0001
0.2725

0.6949
-0.0689
-0.0396

1.0000
-0.2502
-0.1339
-0.1734

0.0278
-0.0903

0.4318

0.1680
-0.0499

0.0000
0.5413
0.7254
1.0000
0.0243
0.2333
0.1216
0.8054
0.4227
0.0001
0.1338
0.6580

0.6105
-0.0615
-0.0495

1.0000
-0.2575
-0.1414
-0.1156

0.1331
-0.1223

0.5683

0.3841
-0.0205

0.0000
0.5926
0.6669
1.0000
0.0229
0.2167
0.3135
0.2453
0.2861
0.0000
0.0005
0.8583

-0.21860994
0.35%)1463
-0.04@12288
-0.25@r1339
1.00@02247
-0.22470000
-0.07215424
-0.187100155
0.03€B0321
-0.16910930
0.21371768
0.09212017

0.05843771
0.00011925
0.72200399
0.02432333
1.00000437
0.04370000
0.52Pa0000
0.09818911
0.740D77762
0.13D14088
0.05541144
0.41890710

-0.22812116
0.41892827
-0.06472813
-0.25¥b1414
1.00@03015
-0.30150000
-0.16865240
-0.174@00853
0.05440025
-0.21910472
0.20662940
0.16662343

0.04980629
0.00010121
0.578M0126
0.0222167
1.00000073
0.00730000
0.15250000
0.13684577
0.63600826
0.0586815
0.06960090
0.14480389

-0.0842
0.0446
0.0258

-0.1734

-0.0721
0.5424
1.0000

-0.2489
0.3217
0.0930

-0.3052
0.1432

0.4548
0.6924
0.8194
0.1216
0.5226
0.0000
1.0000
0.0250
0.0034
0.4091
0.0056
0.2023

-0.0266
0.0008
0.0437

-0.1156

-0.1635
0.5240
1.0000

-0.4951
0.3740
0.2386

-0.4273
0.2910

0.8168
0.9942
0.7041
0.3135
0.1525
0.0000
1.0000
0.0000
0.0007
0.0354
0.0001
0.0098

0.0184
-0.3540
0.1020
0.0278
-0.1879
-0.0155
-0.2489
1.0000
-0.5756
-0.1397
0.3508
-0.1934

0.8702
0.0012
0.3651
0.8054
0.0931
0.8911
0.0250
1.0000
0.0000
0.2135
0.0013
0.0836

0.1143
-0.2796
0.1298
0.1331
-0.1700
-0.0853
-0.4951
1.0000
-0.8010
-0.1195
0.3950
0.0715

0.3190
0.0132
0.2575
0.2453
0.1368
0.4577
0.0000
1.0000
0.0000
0.2972
0.0003
0.5339

-0.0598
0.2741
-0.2768
-0.0903
0.0363
-0.0321
0.3217
-0.5756
1.0000
-0.0007
-0.2676
-0.1487

0.5959
0.0133
0.0124
0.4227
0.7477
0.7762
0.0034
0.0000
1.0000
0.9951
0.0157
0.1854

-0.1268
0.3076
-0.2560
-0.1223
0.0544
0.0025
0.3740
-0.8010
1.0000
-0.0179
-0.2907
-0.1661

0.2685
0.0062
0.0237
0.2861
0.6360
0.9826
0.0007
0.0000
1.0000
0.8765
0.0098
0.1462

0.19940372
0.051m3571
0.01072939
0.43181680
-0.16912137
0.09301768
0.09303052
-0.13%73508
-0.00@/2676
1.00@00377
0.037170000
0.062651280

0.07847416
0.61290011
0.91D30078
0.00011338
0.13010554
0.40881144
0.40910056
0.21850013
0.99810157
1.00007383
0.73830000
0.57832548

0.23941002
-0.05844163
0.023864282
0.56883841
-0.21%12066
0.04122940
0.23864273
-0.11963950
-0.01-2907
1.00@01855
0.18350000
0.00800415

0.03813827
0.62990002
0.830/0001
0.00000005
0.05860696
0.68050090
0.03840001
0.29720003
0.87650098
1.00001040
0.10400000
0.95897183

0.0954
-0.0829
0.3271
-0.0499
0.0921
0.2017
0.1432
-0.1934
-0.1487
0.0626
-0.1280
1.0000

0.3970
0.4618
0.0029
0.6580
0.4135
0.0710
0.2023
0.0836
0.1854
0.5785
0.2548
1.0000

0.1234
-0.0634
0.1258
-0.0205
0.1666
0.2343
0.2910
0.0715
-0.1661
0.0059
-0.0415
1.0000

0.2817
0.5814
0.2725
0.8583
0.1448
0.0389
0.0098
0.5339
0.1462
0.9589
0.7183
1.0000
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- Window =12; shift=1

R =
1.0000
-0.3159
0.2947
0.4122
0.1272
0.1993
0.0066
-0.0013
-0.2961
0.1884
0.3200
0.4188

P=
1.0000
0.0069
0.0120
0.0003
0.2872
0.0932
0.9563
0.9914
0.0115
0.1130
0.0061
0.0003

-0.3159
1.0000
-0.7807
0.2975
0.8060
-0.7586
-0.2624
-0.2240
0.0036
0.2320
0.2840
0.1669

0.0069
1.0000
0.0000
0.0112
0.0000
0.0000
0.0260
0.0586
0.9759
0.0499
0.0156
0.1610

0.2947
-0.7807
1.0000
-0.3883
-0.5084
0.9904
0.5101
0.0054
-0.1337
-0.2487
-0.4667
0.1228

0.0120
0.0000
1.0000
0.0007
0.0000
0.0000
0.0000
0.9639
0.2628
0.0351
0.0000
0.3040

0.4122
0.2975
-0.3883
1.0000
0.1107
-0.3651
-0.0788
0.0812
-0.3881
0.6700
0.7567
0.2342

0.0003
0.0112
0.0007
1.0000
0.3547
0.0016
0.5104
0.4980
0.0008
0.0000
0.0000
0.0477

0.12121993

0.80@07586
-0.50849904
0.11073651
1.00@05645
-0.56450000
-0.26T05467
-0.31480170
0.00@B1454
0.04912165
0.16@44670
0.378M0910

0.287020932
0.00000000
0.00000000
0.354/0016
1.00000000
0.00000000
0.02840000
0.00128872
0.99812230
0.68P10678
0.17840000
0.00004469

0.0066
-0.2624
0.5101
-0.0788
-0.2670
0.5467
1.0000
-0.0879
-0.0586
0.3551
-0.2520
0.3595

0.9563
0.0260
0.0000
0.5104
0.0234
0.0000
1.0000
0.4630
0.6251
0.0022
0.0328
0.0019

-0.0013
-0.2240
0.0054
0.0812
-0.3143
0.0170
-0.0879
1.0000
-0.1707
-0.0558
0.1683
-0.0590

0.9914
0.0586
0.9639
0.4980
0.0072
0.8872
0.4630
1.0000
0.1518
0.6414
0.1576
0.6223

-0.2961
0.0036
-0.1337
-0.3881
0.0003
-0.1454
-0.0586
-0.1707
1.0000
-0.1223
-0.1303
-0.0504

0.0115
0.9759
0.2628
0.0008
0.9981
0.2230
0.6251
0.1518
1.0000
0.3060
0.2752
0.6742

0.18843200
0.23202840
-0.248(4667
0.67@07567
0.0491604
-0.216b4670
0.35812520
-0.05%81683
-0.12Z81303
1.00@05183
0.51830000
0.19830837

0.11800061
0.04990156
0.038%10000
0.00000000
0.68P11784
0.06D30000
0.00220328
0.64041576
0.3062752
1.00000000
0.00000000
0.10874844

0.4188
0.1669
0.1228
0.2342
0.3787
0.0910
0.3595
-0.0590
-0.0504
0.1933
0.0837
1.0000

0.0003
0.1610
0.3040
0.0477
0.0010
0.4469
0.0019
0.6223
0.6742
0.1037
0.4844
1.0000
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Appendix 2. Principal Component Analysis (PCA)

Traditionally, principal component analysis is penied on the symmetric Covariance matrix or
on the symmetric Correlation matrix. These matricas be calculated from the data matrix.
The covariance matrix contains scaled sums of gguamnd cross products. A correlation matrix
is like a covariance matrix but in which the vatesh i.e. the columns, have been standardized.
We will have to standardize the data if the varemof variables, or if the units of measurement
of the variables differs considerably.

In this appendix we report the loadings i.e. eig@tors matrix ordered in decreasing order in
respect to the correspondent eigenvalues and thanea explained for different time window
and different shiftsh

The columns of loadings are the principal composietite rows are the coordinates of the

eigenvectors of covariance matrix in the coordirgtstem:{s, b, T, Sdt, Ddt, Tdt, Sfd,
Dfd, Tfd, Vs, vd, W}

- Loadings for windows =1, shift =1;

0.1801 -0.4014 -0.2349 -0.4308 0.06%b52196 -0.2880 -0.6285 0.1153 -0.103r1062 0.0023
-0.3934 -0.1531 0.2379 0.0802 -0.39201733 -0.1521 0.1371 0.6040 -0.249/3226 0.0436
0.2872 0.0083 0.1344 -0.2054 0.67012206 0.0899 0.2632 0.4220 -0.09003051 0.0378

0.1018 -0.4453 -0.3041 -0.3593 -0.164D1850 -0.0466 0.6879 -0.0987 0.1048B1129 -0.0156
-0.2924 -0.1836 0.3101 -0.1076 0.12€ér5012 -0.6616 0.0590 -0.1768 0.10@P1439 -0.0518
0.1527 -0.0640 0.2032 0.4514 0.34®06499 -0.3977 0.1075 -0.0781 0.07440624 -0.0133
0.2213 -0.4827 0.0824 0.3576 -0.08862244 0.1905 -0.1379 0.3781 0.50862666 0.0098

-0.3963 -0.2527 0.1831 -0.1117 0.31461412 0.3549 -0.0538 0.0358 -0.383r5822 0.0093
0.2760 0.0306 0.5399 -0.2630 -0.19@651090 0.1178 -0.0161 -0.0529 0.0148B0135 -0.7023
0.2610 -0.4511 0.0570 0.3734 -0.07832393 0.0953 0.0227 -0.3546 -0.56D42681 -0.0044
-0.4144 -0.2761 0.1856 -0.0793 0.18241403 0.3181 -0.0775 -0.3328 0.41665145 0.0476
0.2985 0.0421 0.5203 -0.2574 -0.21890787 0.0375 -0.0069 -0.1150 0.014P0860 0.7056

Eigenvalue Cumulative sum of
% variances explained
3.4124 28.4363
2.2086 46.8410
1.9863 63.3939
1.3426 74.5818
1.1692 84.3254
0.8048 91.0324
0.4502 94.7836
0.2249 96.6580
0.1709 98.0824
0.1215 99.0951
0.1021 99.9458
0.0065 100.0000
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- Loadings for Windows =2; shift =1

0.3465
-0.4940
0.3910
0.2760
-0.2800
0.0957
-0.1753
0.3484
-0.3465
0.1022
0.0874
0.1705

-0.1773
-0.2600
0.3575
-0.3741
-0.0709
0.4118
0.4458
-0.1230
0.0695
-0.2047
-0.3879
0.2179

0.4449
0.0490
-0.0642
0.4499
-0.2187
0.1222
0.1907
-0.4032
0.3578
0.3050
-0.3302
-0.0370

- Loadings for Window =3; shift =1

0.3381
-0.5355
0.4711
0.2152
-0.2994
0.2124
0.0003
0.2231
-0.2777
0.1123
-0.1710
0.1649

-0.1095 0.4278 -0.1373

-0.0342
0.1396
-0.2627
-0.0256
0.3548
0.4941
-0.3974
0.3496
-0.0004
-0.4490
0.2144

0.2023
-0.2427
0.5555
-0.1895
-0.0060
0.0785
-0.2900
0.2647
0.4578
0.0099
-0.0517

-0.1565 0.03414237 0.0363 -0.0616 -0.0458 -0.30425810 0.0996
0.0864 0.3270/0519 0.0439 -0.2625 -0.0862 0.029D0016 0.6995
-0.3521 0.00010211 -0.2700 0.3029 -0.1582 0.29420609 0.5575
-0.0458 0.07702021 -0.0253 -0.0678 0.2151 0.22766563 -0.0266
-0.4982 0.30452672 -0.4257 0.2080 0.1844 -0.38¥41423 -0.1669
0.4031 0.398922266 -0.1099 -0.0580 -0.5121 -0.27442686 -0.1056
0.2928 0.20M2698 -0.0478 0.1500 0.6308 0.27991782 0.0003
0.3847 -0.10460798 0.1087 0.1566 0.3560 -0.48221553 0.3403
-0.0484 -0.27960330 0.3793 0.6466 -0.1350 -0.219R1638 0.1022
0.1897 0.350%6713 -0.3116 0.3065 0.0833 -0.13€R1534 -0.0162
0.1506 0.36312649 0.2036 0.4600 -0.2198 0.39801594 -0.1518
-0.3694 0.4932295 0.6583 -0.1173 0.1576 -0.1129629 -0.0258
eigenvalue Cumulative sum of
% variances explained
2.5456 21.2135
2.1069 38.7706
1.7169 53.0778
1.2568 63.5516
1.1540 73.1679
0.8827 80.5238
0.6936 86.3037
0.5734 91.0819
0.4304 94.6689
0.3533 97.6127
0.1798 99.1111
0.1067 100.0000
0.09075344 -0.0421 -0.1302 -0.0179 0.26915273 0.0922
-0.0583 -0.27860521 0.1807 -0.2099 -0.0240 -0.01160051 0.7141
-0.2784 0.11311118 -0.3390 0.2001 -0.1859 -0.23@00220 0.5926
-0.0806 0.028@81348 -0.0382 -0.0045 0.1963 -0.318R6412 -0.0080
-0.5566 -0.06%81897 -0.5833 -0.2368 0.1624 0.21P11633 -0.1712
0.2331 -0.51662463 -0.0919 -0.2448 -0.5142 0.13@02968 -0.0884
0.2177 -0.32811448 -0.2289 0.1653 0.6106 -0.288€41947 0.0048
0.3355 -0.20700616 -0.0557 0.1419 0.3696 0.53522031 0.2480
0.1042 0.35041249 -0.1499 0.5723 -0.1517 0.39972146 0.0754
-0.0741 -0.27417230 -0.2576 -0.0249 -0.0095 0.28481507 -0.0424
-0.0447 -0.43@6R1450 -0.1722 0.5709 -0.2873 -0.24701928 -0.1377
-0.5927 -0.30M0134 0.5714 0.2852 0.1421 0.19611021 -0.0718
eigenvalue Cumulative sum of
% variances explained
2.5907 21.5893
2.2755 40.5516
1.8957 56.3489
1.2492 66.7591
1.2104 76.8458
0.7672 83.2390
0.6604 88.7422
0.4249 92.2834
0.4061 95.6678
0.2772 97.9778
0.1721 99.4123
0.0705 100.0000
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- Loadings for Window =6; shift=1

0.3277 0.1341 0.3307 -0.0481 0.23426300 0.0833 -0.2754 -0.0558 0.44990007 0.1471
-0.1248 -0.17&¥0579 0.7073

-0.5359
0.4560
0.1733

-0.3104
0.2864
0.0703
0.2191

-0.2651
0.1429

-0.1712
0.1270

0.0558
-0.1166
0.2900
0.0394
-0.2990
-0.4605
0.4454
-0.3886
0.0581
0.4688
-0.0755

0.1779
-0.2488
0.5171
-0.1944
0.0527
0.2435
-0.2606
0.2471
0.5190
0.1756
-0.0255

-0.2073 -0.16980620 0.0541 -0.2252
0.0875 0.40841916 0.1906 0.2006 0.1789
0.0577 0.174060649 -0.1514 -0.0470 0.1935
-0.3352 0.61%00394 0.4066 -0.2353 0.0646
-0.2796 -0.388B2060 0.5920 0.1461 -0.2682
-0.2749 -0.176R1809 -0.0138 -0.2948 0.6914
-0.1157 -0.30660320 -0.0701 -0.0270 0.2316
0.2352 0.17%62316 -0.0768 0.5475 0.1127
-0.0181 0.08006517 0.1287 -0.0102 -0.3656
-0.2096 -0.07070110 0.3442 0.5346 0.3453
-0.7514 0.14780285 -0.5187 0.2846 -0.1962
eigenvalue Cumulative sum of
% variances explained

2.8242 23.5353

2.6929 45.9762

1.9972 62.6199

1.2969 73.4270

1.0064 81.8141

0.7694 88.2260

0.5553 92.8538

0.2996 95.3502

0.2354 97.3117

0.1868 98.8682

0.1291 99.9437

0.0068 100.0000

- Loadings for Window =12; shift =1

0.0081
-0.4214
0.4547
-0.3021
-0.3343
0.4561
0.2274
0.0405
0.0119
-0.2068
-0.3251
-0.0511

-0.4542

0.1498
-0.1867
-0.4294

0.0826
-0.1807
-0.2659
-0.0902
0.3158
-0.3848
-0.2978
-0.3118

0.0647
0.2523
0.1095
-0.1693
0.4432
0.0857
0.3254
-0.4918
0.1362
0.0221
-0.2714
0.4972

-0.13880718 0.6103
-0.70410620 -0.1156
-0.06762629 -0.2694
-0.298D1142 -0.0938
0.13%70250 -0.0142
0.08807087 0.0923
0.08805014 0.0381
0.28812079 0.0193
0.19953265 -0.0098
-0.00840363 0.0179

-0.24873693 -0.5529
-0.04286377 0.3599
-0.56960909 0.2964
-0.11963077 0.4606
-0.08905825 -0.3287
-0.36410000 0.0000
-0.12210000 -0.0000

-0.26800000 0.0000

-0.0844 0.3776 0.418P0000 0.0000

0.183L0000 0.0000

-0.4234 -0.2447 0.0057 0.36@30000 0.0000

0.4841 -0.36%B0642 0.4118 -0.1318 -0.1607 -0.18701214 -0.3959
-0.0646 0.30D20134 -0.0898 0.2128 0.2891
0.1071 -0.02@B0615 -0.0257 0.2920 0.3268
-0.0653 -0.01451267 -0.3365 -0.2904 0.2388
0.3128 0.108270386 0.3783 0.3182 0.0984
0.0222 0.04@60728 -0.1465 0.3044 0.4184
-0.5047 0.21T381252 0.1314 0.1377 -0.5341
0.0932 0.30837302 0.2728 0.0588 0.1365
-0.2826 -0.73183873 0.0248 0.0224 0.1838
-0.5295 -0.05360900 0.4412
-0.0231 -0.26980405 -0.2784 0.6957 -0.2484
0.1522 0.01865104
Eigenvalue Cumulative sum of
% variances explained
4.0386 33.6551
2.5374 54.8002
1.6825 68.8214
1.2192 78.9810
0.8815 86.3269
0.8325 93.2644
0.2978 95.7462
0.2513 97.8404
0.1587 99.1627
0.1005 100.0000
0.0000 100.0000
0.0000 100.0000
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- Loadings for Window=3; shift =3;

0.2487
-0.4657
0.2876
0.2268
-0.2306
0.0230
-0.2530
0.4273
-0.4489
-0.0354
0.2895
-0.0171

0.0063
0.3377
-0.4533
0.2661
0.1288
-0.4081
-0.4112
0.1081
0.0123
-0.0188
0.3946
-0.2990

0.4608
-0.0039
-0.1766

0.4640
-0.4498

0.2136

0.2275
-0.0896

0.3290
-0.0188
-0.1455
-0.3219

0.1035 0.5573 0.12103376 0.1271

- Loadings for Window =6; shift =6

0.2264
-0.4134
0.3893
0.1873
-0.1667
0.0479
-0.2363
0.4309
-0.4071
-0.0117
0.3554
0.1654

-0.0327
0.1728
-0.2370
0.1630
0.2587
-0.5336
-0.4891
0.0602
-0.0310
-0.2903
0.3031
-0.3388

0.2786
-0.0313
-0.2552
0.5438
-0.4840
0.0887
-0.0053
-0.0789
0.3103
0.3254
0.1385
-0.3015

0.4155 -0.12962470 -0.1001
0.0373 0.07D43174 0.1556 0.0193 -0.0351
0.2005 -0.06811980 -0.3958 -0.2648 -0.2272
0.3451 0.07941046 -0.1703 0.1264 -0.5301
0.2007 -0.20802983 -0.6526 0.1766 0.1544
-0.3033 0.14®/5512 -0.0448 -0.3758 0.1707
-0.2573 -0.024p2520 -0.1638 0.5044 -0.3694
-0.4415 -0.07800184 -0.0397 0.3966 0.2401
-0.0518 -0.05@62689 -0.2639 -0.3556 0.1349
0.0479 0.91481676 -0.2393 0.1888 0.1865
-0.2021 0.19m43800 -0.1518 -0.3946 -0.2324
0.4769 0.15202943 0.4169 0.0294 -0.0397
eigenvalue Cumulative sum of
% variances explained
2.8608 23.8396
2.2642 42.7078
1.6610 56.5497
1.5987 69.8726
1.0800 78.8724
0.9322 86.6409
0.6053 91.6850
0.4041 95.0526
0.3170 97.6940
0.1977 99.3418
0.0744 99.9616
0.0046 100.0000
0.3265 0.65IR0560 -0.4200 0.1218 -0.1774
0.2391 -0.00911514 0.2930 0.1477 0.2199
-0.0364 0.018b1551 0.2178 -0.1684 -0.2429
0.3797 0.00823184 0.5804 -0.1759 -0.0160
0.4700 0.07@62453 0.1678 0.0893 -0.1451
-0.1629 0.28%64910 0.4423 0.0424 0.1981
0.0562 -0.12%B4101 0.1183 0.5506 -0.4343
-0.1146 -0.15@662193 0.0135 0.3830 0.5545
-0.0410 0.16@B1250 -0.1268 0.2587 0.3361
0.3377 -0.61983462 -0.2875 -0.1779 -0.0086
0.0336 -0.19804110 0.0465 0.5876 -0.2072
0.5569 0.02071631 -0.1203 0.0259 0.3854
Eigenvalue Cumulative sum of
% variances explained
47794 39.8285
2.5936 61.4415
1.6013 74.7859
1.2937 85.5670
1.0577 94.3811
0.3081 96.9487
0.2058 98.6635
0.0808 99.3370
0.0672 99.8965
0.0118 99.9949
0.0006 100.0000
0.0000 100.0000

-0.10D80472 0.7235
0.00980354 0.5634
-0.08664328 -0.0793
-0.09291494 -0.2115
-0.298r3232 -0.0691
0.24123256 -0.0048
0.32D64447 0.2731
0.57262637 -0.0313
-0.03450249 0.0189
0.383X3651 -0.0643
0.47822473 -0.0839

-0.287100871 0.1537
-0.14663045 0.6692
0.00@x5325 0.5320
0.03441245 -0.1104
-0.304B2637 -0.4070
-0.08882112 -0.2601
-0.10980079 0.0000
-0.50841046 0.0000
0.20806744 -0.0000
-0.27850370 -0.0000
0.39280973 0.0000
0.50630989 -0.0000
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- Loadings for Window =12; shift =12;

-0.1410
-0.3313
0.4232
-0.3716
-0.2716
0.4171
0.1830
0.2134
0.0294
-0.2403
-0.3966
-0.1028

0.4800
-0.2580
0.0318
0.1997
0.0358
-0.0333
-0.4426
0.4305
-0.1328
-0.4841
0.1555
-0.0480

-0.1966
-0.2364
-0.1780
-0.0981
-0.4490
-0.1628
-0.3149
-0.2891

0.3710
-0.0928

0.2201
-0.5085

-0.3271 -0.1971B0332 -0.0019 -0.3448 -0.1609
0.2799 0.26140064 -0.5004 0.0050 0.2922
-0.0185 0.23288334 -0.1036 0.0246 -0.1261
0.2317 0.540/0870 0.4250 -0.0158 0.0313
-0.2084 -0.34@42782 0.1390 -0.1241 0.5716
0.0833 0.36€43055 0.0309 -0.4702 0.3371
-0.0252 -0.054D0902 0.6548 0.0944 -0.0825
0.1143 0.00@62002 -0.0168 0.7366 0.2122
-0.7080 0.31400082 0.0179 0.2094 0.3952
-0.0349 -0.15170722 -0.0783 0.2017 -0.1214
0.0086 0.21681652 0.2431 0.0691 -0.0927
-0.4404 0.33852125 -0.2083 0.0542 -0.4474

Eigenvalue Cumulative sum of
% variances explained
4.9765 41.4707
2.8991 65.6301
2.6572 87.7734
1.0775 96.7527
0.3897 100.0000
0 100.0000
0 100.0000
0 100.0000
0 100.0000
0 100.0000
0 100.0000
0 100.0000

0.19%60587 -0.6143
-0.26801641 -0.4313
0.05490437 -0.0841
0.12885088 -0.0377
-0.05270002 0.3441
0.39812446 0.1077
-0.25881697 -0.3494
0.16281103 -0.0770
-0.01-210878 -0.1874

0.77400392 -0.0678
0.07037736 0.1401
-0.1317/0159 0.3328
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