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D5.3: 

The study of energy spot prices and their correlation with faults in the Nordic 

region applying Recurrence Quantification and Cross Recurrence Analysis.  

Fernanda Strozzi, José Manuel Zaldívar* 

LIUC University, Castellanza, VA, Italy 
*JRC, Ispra, VA, Italy 

 

PREFACE 

This work is composed of two parts. The first consists in the application of non-linear time series 

analysis techniques to the Nordic spot electricity market and the second in the study of the 

correlation between disturbances and prices. Both studies are performed using the data respectively 

of spot prices, Total consumption and Disturbances in the Nordic Region publicly available from 

www.nordpool.com and www.nordel.org.  In both parts we have applied, together with other 

techniques, Recurrence Quantification Analysis (RQA), that in the case of different time series 

becomes Cross Recurrence Plot Analysis (CRP). 

 In the first part of the work, we have studied the electricity spot prices Recurrence Plot that allows 

to a new representation of data in which new measures can be applied (Determinism and 

Laminarity) and they have demonstrated to be able to distinguish between real and surrogate 

(random Gaussian with the same FFT) data. Moreover they  give a new measure of volatility that 

takes into account the dynamic properties and not only the statistical distribution of the data.   

The second part studies the correlation between electricity prices and disturbances. In this case 

Cross recurrence plot allows, given two time series to identify a shift and a temporal window on 

which both series are linearly correlated.   

 

Keywords: Recurrence Plot, RQA, CRP, linear correlation analysis. 
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1. APPLICATION OF NON-LINEAR TIME SERIES ANALYSIS 

TECHNIQUES TO THE NORDIC SPOT ELECTRICITY MARKET DA TA  

This is a summary of the extended work contained in Strozzi et al 2007, Strozzi et al 2008 and 

partially in Erzgräber et al., 2008. (Annexes I -III).  In these two works, we have applied non-linear 

time series techniques to the Nordic spot electricity market data. The time series are given in two 

periods, from May 1992 to December 1998 in Norwegian Kröne per MWh and from January 1999 

to January 2007 in EUR per MWh. First, a preliminary study was carried out with the aim of 

characterising the time series in terms of long term memory (R/S analysis), and tails (stable 

distributions). Surrogate time series were also generated to test if the original time series were 

similar to a stationary Gaussian linear process. In a second step, state space reconstruction 

parameters: time delay and embedding dimension were used to carry out the analysis of these two 

series in the reconstructed state space. We applied Recurrence Quantification Analysis (RQA), 

which is based on the definition of several parameters that allows the quantification of the 

Recurrence Plots (RP). The RQA analysis of both time series and in particular determinism and 

laminarity has shown the ability to distinguish between real and surrogate data and to measure the 

financial volatility.   

1.1. R/S analysis confirms long range correlation and anti-persistence  

A tool for studying long-term memory and fractality of a time series is the Rescaled Range analysis 

(R/S analysis) first introduced by Hurst (1951) in hydrology. Mandelbrot (1983) argued that R/S 

analysis is a more powerful tool in detecting long range dependence compared to more conventional 

analysis like autocorrelation analysis, variance ratios and spectral analysis. In this method, one 

measures how the range of cumulative deviations from the mean of the series is changing with the 

time. It has been found that, for some time series, the dependence of R/S on the number of data 

points (or time) follows an empirical power law described as (R/S)n=(R/S)0 n
H, where (R/S)0 is a 

constant, n is the time index for periods of different length, and H is the Hurst exponent. (R/S)n is 

defined as  
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The Hurst exponent, 0≤ H ≤1, is equal to 0.5 for random walk time series, <0.5 for anticorrelated 

series, and >0.5 for positively correlated series. 

A long memory process is a process with a random component, where a past event has a decaying 

effect on future events. The process has some memory of past events, which is "forgotten" as time 

moves forward. The Hurst exponent has a relationship with the rate at which the correlation 

function decays. In this work we have calculated Hurst exponent for the given time series and a set 

of their surrogate (random Gaussian with the same FFT). All the time series show antipersistence 

i.e.  H<0.5. This has already been found by several authors. The results show that the H exponent of 

surrogates are slightly lower than  the one of the correspondent real data but it is not possible to find 

a numerical H values that separate real from surrogate data. Different methods to calculated Hurst 

exponent these electricity prices are applied in Erzgräber et al. (2008).  

1.2. Stable distribution fitting. 

Stable distributions are a class of distributions that include Gaussian, Cauchy and Levy 

distributions. They allow skewness and heavy tails. The general stable distribution is described by 

four parameters the first two are α∈(0,2], an index of stability and β∈[−1,1], a skewness parameter. 

α and β determine the shape of the distribution. The last parameters are γ∈[0,∞) a scale parameter 

and δ∈(−∞,∞) a location parameter. There are no closed formulas for density and distribution 

function with the exception of Gaussian, Levy and Cauchy. 

Stable distributions have been proposed as a model for many types of physical and economic 

systems because many large data sets exhibit heavy tails and skewness. Anyway, while non-

Gaussian stable distributions are heavy tailed, most heavy-tailed distributions are not stable. Stable 

distributions have the important property of stability: if a number of independent and identically 

distributed (iid) random variable have a stable distribution, then a linear combination of these 

variables will have the same distribution, except for possibly different shift and scale parameters. 

A stable probability distribution is defined by the Fourier transform of its characteristic function 

( )tϕ : 

( )∫
∞

∞−

−= dtetxf itxϕ
π

δγβα
2

1
),,,;(  (2) 

where ( )tϕ  is given by 

( ) ( )[ ]Φ−−= )sgn(1||exp tititt βγδϕ α  (3) 

and sgn(t) is just the sign of t and Φ is given by 

)2/tan(πα=Φ  (4) 

for all α except α=1 in which case: 



 6 

)log()/2( tπ−=Φ  (5) 

The heavy tail behaviour causes the variance of stable distribution to be infinite for α<2 (for α=2 is 

Gaussian). 

There is no general analytic expression for a stable distribution. There are, however four special 

cases which can be analytically expressed: 

a/ for α=2 the distribution becomes a Gaussian distribution with variance 22 2γσ =  and mean δ  

b/ for α=1 and β=0 the distribution reduces to a Cauchy distribution with scale parameter γ and shift 

parameter δ  

c/ for α=1/2 and β=1 the distribution reduces to a Levy distribution with scale parameter γ and shift 

parameter δ  

d/ In the limit as γ� 0 or as α� 0 the distribution will approach a Dirac delta function )( δ−xδ  

 In order to analyse these series we have fitted the histogram to the first normalized logarithmic 

return. A typical situation in these time series is the existence of a high number of zero values 

normally in correspondence with weekends or holidays. To compare the results, we have eliminated 

from the original series the points where the exchange rate was unchanged, i.e. the zero value. Table 

6 summarizes the fitted parameters using the maximum likelihood estimation (Nolan, 1997 and 

1999). 

 
Table 1. Nord Pool data fitted parameters using STABLE (Nolan, 1999). 

 

 

 

 

 
Due to the high amount of zero in the price in Norwegian Kröne, it is difficult to find  a good fit for 

this time series. 

Afterwards, the surrogate time series for the Nord Pool in EUR have been compared with the 

original time series. We have found that they have a probability distribution function more similar 

to a Gaussian (α near 2) in comparison with original data (α =1.308) and they have β closer to 0 

than original data which mean that their probability distribution functions are less skew.  

1.3. Recurrence Quantification Analysis  

Eckmann et al. (1987) introduced a new graphical tool, which they called a recurrence plot (RP). 

The recurrence plot is based on the computation of the distance matrix between the reconstructed 

points in the phase space, i.e. si={ s(t), s(t-τ), s(t-2τ),...s(t+(dE-1)τ}, 

Data set αααα    ββββ    γγγγ....    δδδδ    
KRN 0.412 -0.365 0.035 -0.00018 
KRN(0) 1.116 0.127 0.242 -0.0514 
EUR 1.308 0.164 0.268 -0.068 
EUR(0) 1.315 0.173 0.272 -0.069 
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 jiijd ss −=  (6) 

This produces an array of distances in a NxN square matrix, D, being N the number of points under 

study. Once this distance matrix is calculated, in the original paper of Eckmann et al. (1987), it was 

displayed by darkening the pixel located at specific (i,j) coordinates which corresponds to a distance 

value between i and j lower than a predetermined cutoff, i.e. a ball of radius ε centered at si. 

Requiring εi = εj, the plot is symmetric and with a darkened main diagonal correspondent to the 

identity line. The darkened points individuate the recurrences of the dynamical systems and the 

recurrent plot provides insight into periodic structures and clustering properties that are not apparent 

in the original time series (Eckmann et al.,1987). 

To extend the original concept and made it more quantitative Zbilut and Webber (1992) developed 

a methodology called Recurrence Quantification Analysis (RQA) (Webber and Zbilut, 1994). For 

an excellent overview the reader is referred to Marwan et al. (2007). As a result, they defined 

several measures of complexity to quantify the small scale structures in RP. These measures are 

based on the recurrence point density and the diagonal and vertical line structures of the RP. A 

computation of these measures in small windows (sub-matrices) of the RP moving along the main 

diagonal yields the time dependent behaviour of these variables. Some studies based on RQA 

measures show that they are able to identify bifurcation points, especially chaos-order transitions 

(Trulla et al., 1996). The vertical structures in the RP are related to intermittency and laminar states: 

those measures quantifying the vertical structures enable to detect chaos-chaos transitions (Marwan 

et al., 2002). In these work we will use the measure of the percentage of diagonal and vertical lines 

(determinism and laminarity respectively).  

To check if RQA measures are able to distinguish between real data and their surrogates (linear 

Gaussian processes) we calculated all of them for both. Using %determinism, %laminarity we 

obtain values which are always smaller for surrogate data in comparison with original data sets. The 

fact that these two parameters are able to distinguish between the original time series and the 

surrogate time series points toward the explanation that the original series have more diagonal and 

vertical lines, and therefore their state remain near or at the same place longer in time more often 

than for its surrogates linear Gaussian process and that they posses a different decaying of the 

autocorrelation function.  

1.4. Determinism and Laminarity as volatility measures. 

We have applied Recurrence Quantification Analysis (RQA) to data sets taken from the Nordic spot 

electricity market (Strozzi et al., 2008) Our main interest was in trying to correlate their volatility 

with variables obtained from the quantification of recurrence plots (RP). For this reason we have 
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based our analysis on known historical events: the evolution of the Nord Pool market and climatic 

factors, i.e. dry and wet years, and we have compared several dispersion measures with RQA 

measures in correspondence of these events. The analysis suggests that two RQA measures: 

determinism (DET) and laminarity (LAM) can be used as a measure of the inverse of the volatility. 

The main advantage of using DET and LAM is that these measures provide also information about 

the underlying dynamics. This fact is shown using shuffled and linear Gaussian surrogates of the 

real time series. 

Several measures of volatility has been used in literature (Simonsen, 2003, Hsu and Murray, 2007, 

Figueiredo, et al. 2005), between them we have considered: 

)(1 tsSDV =            (7) 

)( 12 −−= tt ssSDV           (8) 

)/)(( 113 −−−= ttt sssSDV          (9) 

where ts  and SD refer to the time series values and the standard deviation, respectively. To 

calculate the standard deviation the following formula was used: 
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approximation of )/ln( 1−tt ss  which is often used to measure financial volatility. In order to 

compare these quantities with RQA measures we have inverted and normalized them as follows: 
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We have assumed that an increase of the dispersion measure corresponds to a decrease of RQA 

measures that account for the predictability of the underlying dynamical system.   

As a first step, we have compared the RQA measures of the original time series with two types of 

surrogate series: shuffled and linear Gaussian with the same FFT. We have observed that RQA 

measures do not characterize the probability distribution of the data, because the shuffled and the 

real data have the same mean and variance, but different values of RQA measures. In addition, we 

have found that two RQA measures: DET (%determinism) and LAM (%laminarity) are able to 

distinguish between real and linear Gaussian surrogate with 95% of confidence. For this reason and 

because of the hypothesis that high volatility can imply small DET and LAM, we have compared 

them with the inverse of the normalized dispersion measures given by Eq. 12 on a one month 
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moving window translated of one month. We have found that these measures are correlated with the 

inverse of dispersion measures that are used to evaluate the volatility of financial time series. 

We have found a qualitative agreement from the point of view of high and low values 

corresponding to wet and dry periods and a general decrease of the measures with the entrance of 

new countries in the Nord Pool. The linear correlation between these measures decreases for the 

linear Gaussian surrogates as well as the agreement with historical events. 

To see if the RQA measures have some advantages in comparison with the other dispersion 

measures (Eq. 12), we have observed that DET and LAM show more pronounced jumps between 

the periods analyzed. This behaviour is lost when we apply the same treatment to surrogate data 

sets. 

 

2. CORRELATION ANALYSIS BETWEEN FAULTS IN THE ELECT RICITY GRID AND 

ELECTRICITY PRICES IN THE NORDIC REGION  

In this Section we have summarized the work contained in Strozzi and Zaldívar (2009), see Annex 

IV.  

The deregulation has caused considerable changes in the electricity market. On one hand the 

increase in the competition has modified the prices volatility; on the other hand this competition has 

stressed electricity grids with the variation of the flow in the physical network. Thus it is natural to 

assume that some correlations between electricity prices and disturbances in the electricity grid 

should exist. The correlations, once detected, can help in the prevention of the disturbances acting 

on the electricity price or, at least, in the management of the contingency. 

In Strozzi and Zaldívar (2009) we have analyzed possible correlations between electricity prices 

and disturbances using the data of the Nordic electricity market. We have used the monthly spot 

prices, disturbances and consumption from the beginning of January 2000 until the end of 

December 2006 in the Nordic region, i.e. Denmark, Finland, Norway and Sweden. The preliminary 

treatment of the data include the elimination of the trends applying the difference operator and 

subtracting the regression line. In addition, we have considered the price volatility and similarly the 

volatility of disturbances and of total consumption. The questions we were interested in addressing 

were the following: Are the monthly spot prices correlated with disturbances? Can we increase the 

correlation by shifting the time series and can we use the evolution of one time series to anticipate 

the behaviour of the other and/or to prevent adverse events? Can we detect windows of correlation 

and find a correspondence of the starting and ending point with some know events? To answer the 

mentioned questions we have proposed the following methodology. First, staring from prices, 

disturbances and consumption we have generated other 9 time series: the detrended ones, the first 
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differences and the volatilities. Than we have try to extract relevant correlations performing the 

mean (or standard deviation in the case of volatilities) on different time windows shifted by 

different time intervals and we have calculated all the correlation matrices and Cross Correlation 

Function to see if a relevant linear correlation exist or directly or after a shift of one series in respect 

to the other. To see if a linear correlation exists only on one portion of a time series in respect to 

another one and then disappears due to some external event, we have applied the Cross Recurrence 

Analysis that is a generalization of the Cross Correlation Function. The Principal Component 

Analysis is applied to understand if the set of 12 time series considered contain more information 

than the one contain only in Spot prices, Disturbance and consumption from which they have been 

generated. 

2.1. Linear correlation coefficient: correlation matrix. 

The correlation coefficient matrix represents the normalized measure of the strength of linear 

relationship between variables. To measure the significance of each correlation we have applied the 

t-test. In every correlation matrix R we have considered the correlation values R(i,j) higher than 

0.7071 (i.e. a determination coefficient R2 > 0.5) with a significance level of 95% i.e. P(i,j) < 0.05. 

Each P(i,j) value gives the probability of getting a correlation as large as the observed value by 

random chance, when the true correlation is zero. The results are presented in Table 2 and 3 In 

which we have underlined the correlation between different variables and in bold the correlations 

values between Disturbances and prices. 

 

Table 2. Significant linear correlations coefficient R(i,j) between data sets for different when w 
equal to sh. 

w=1, sh=1 w=3 (seasonal); sh=3 w=6; sh=6 w=12; sh=12 
S,Sdt (0.7317) 
Sfd,Vs(0.8607) 
Dfd,VD(0.8761) 
Tfd,VT(0.9896) 

D,T (-0.8154) 
 

Dfd,D(-0.8503) 
Tfd,T(-0.8686) 
VD,Dfd(0.7698) 
D,T(-0.8594) 
D, Tfd(0.776) 
T,Dfd(0.7752) 

Tdt,T(0.9842) 
VD,T(-0.9057) 
VD,Sdt(0.8138) 
VD,Tdt(-0.9014) 
 
 

 

Table 3. Significant linear correlations coefficient R(i,j) between data sets for different w and sh=1.  

w=2; sh=1 w=3 (seasonal); sh=1 w=6; sh=1 w=12; sh=1 
T,D (-0.7354) 
S, Sdt(0.7195) 
 

T,D (-0.8057) 
 

T,D(-0.9044) 
Tfd,Dfd(-0.8010) 

T,D(-0.7807) 
D,Tdt(-0.7586) 
D,Ddt(0.8060) 
T,Tdt(0.9904) 
VD-Sdt (0.7567) 
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Since we are interested mostly in the correlations between price and disturbances we can conclude 

that it exists only for w=12 and sh=12 or sh=1, particularly between the volatility of disturbances 

and the mean Spot prices de-trended. 

2. 2. Principal Component Analysis 

Principal component analysis (PCA) is a technique used to reduce multidimensional data sets 

(Jackson, 1991, Jolliffe, 2002). It is a way to identify patterns (linear) in data and then to compress 

them by reducing the number of dimensions without much loss of information. The eigenvector of 

the covariance matrix are the components. The eigenvector with the highest eigenvalue is the 

principal component of the data set. A subset of the eigenvectors is selected as basis vectors: the 

more significant and the others are cancelled. Usually those eigenvalues which sum is 90% of the 

sum of all eigenvalues are considered. The first principal component is that linear combination of 

the original variables which accounts for the maximum amount of variance in a single line. It is the 

line of best fit through the data, and the residual variance about this line is then a minimum for the 

data set. The second principal component is that line which is orthogonal to the first principal 

component and accounts for the maximum amount of the remaining variance in the data. The first 

two components therefore represent the plane of best fit through the data. The eigenvalues obtained 

from Principal Components Analysis are equal to the variance explained by each of the principal 

components, in decreasing order of importance. The summary of PCA analysis is presented in Table 

4. 

 

Table 4. Summary of PCA results. 

w sh # points #PC to explain at  
least 50% 
variance 

% variance 
explained 

#PC to explain at 
least 90% 
variance 

% variance 
explained 

1 1 83 3 63.39 6 91.03 
2 1 82 3 53.08 8 91.08 
3 1 81 3 56.35 8 92.67 
6 1 78 3 62.62 7 92.85 
12 1 72 2 54.80 6 93.26 
3 3 27 3 56.55 7 91.69 
6 6 13 2 61.44 5 94.38 
12 12 6 2 65.63 4 96.75 

 

In the first two columns of Table 4 there are the values of w and sh and, in the third, the number of 

points of each time series considered in calculating PCA. In the fourth column the number of 

principal components able to explain at least the 50% of variance is listed. It seems that an hyper 

plane of dimension three can fit the data. This is not so strange since we built the twelve time series 
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starting from three of them (S, D, T), but if we are interested in explaining at least 90% of variance 

we can see that we need always more than 3 principal components. Sometimes even 8 principal 

components are necessary i.e. the original time series and their first difference, for example, do not 

contain still all the independent information. 

2.3. Cross Correlation function 

Cross correlation is a generalization of the correlation coefficient and a standard method of 

estimating the degree to which two series are correlated when we shift them one in respect to the 

others (Orfanidis, 1996).  

We have calculated the cross correlation function for every window, w, and every shift, sh. The 

maximum values obtained are listed in Table 5 together with the correlation coefficients without 

delay, R(0), and the p values of the t-tests. VD is correlated with price volatility, price first 

difference and price de-trended but only considering windows of six or twelve months.  

 

Table 5. Results from the cross correlation analysis. 

Time 

series 

w sh R(0) p delay 

(months) 

R(delay) p 

VS VD  12 1 0.5183 0.0000 -6 0.8906 0.0000 

VS VD  6 1 0.1855 0.1040 -6 0.5959 0.0000 

Sdt VD 12 1 0.7567 0.0000 -3 0.8536 0.0000 

Sfd VD 6 1 -0.4273 0.0001 -8 0.7430 0.0000 

Sfd VD 6 6 -0.7778 0.0017 -1 0.8725 0.0002 

 

The correlation function between D-Sfd and D-S which, that, even if it never reaches R-values 

higher than 0.4, it has a regular oscillating  behaviour in respect to the delay (Fig. 1) 
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Figure 1. Cross Correlation functions for Disturbances with w = 2, sh =1. 

 

2.4. Cross Recurrence Plot 

CRP is a bivariate extension of Recurrence Plot and was introduced to analyse the dependencies 

between two different time series by comparing their joint recurrence (Marwan and Kurths, 2002). 

It can be considered as a generalization of the linear cross-correlation function (Marwan et al. 

2007), infact they introduced the Line Of Syncronization (LOS) which is a particular diagonal line 

in RP which local slope corresponds to the transformation of the time axes of the two considered 

trajectories. A time shift between the trajectories causes a dislocation of the LOS. Hence LOS 

allows finding the rescaling function between different time series. In the time window in which 

LOS has a slope 1 the two time series are linear correlated directly or after a shift of one in respect 

of the other, this is the case in which LOS is parallel to the main diagonal of RP but not coincident.  

An example of LOS obtained by the CRP of Disturbances (D), and first differences of Total 

Consumption (Tfd) is shown in Fig 2.  

A disadvantage of using CRP is that in order to obtain a good LOS quality, which means that 

information given by LOS show real changes in the correlation properties, there is the need of a 

certain minimum amount of points. In this work we have been able to obtain good LOS quality 

using only data with w= 2 and sh =1; in the other cases there were not enough points to perform this 

analysis.  

To confirm the fact that LOS allows in detecting windows of higher linear correlation, we have 

compared the correlation of the entire time series with the one obtained using only the portion of the 

data in which the LOS is parallel to the main diagonal (RLOS) and with the one suggested by the 

correlation function (RCCF) i.e. obtained translating the entire time series. All the results are shown 

in Table 6. Moreover, looking to Table 6, we can observe that LOS allows identifying the time in 
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which Spot Prices changes at the beginning of the dry period (June-July 2002) and in which the 

prices increase due to the dependence from external sources.   

 

Table 6.  Correlation coefficient for different portion of the time series. ns: not significative. R: 
correlation Coefficient of the entire time series and without shift. RCCF:  max correlation obtained 
using Cross Correlation Function. RLOS: Correlation coefficient of the portion of the time series 
suggested by LOS. 
 

Time Series  R RCCF RLOS  Date correspondent to the 

points considered 

-Disturbaces 

-Prices 

-0.2692 -0.2692 0.3979 

(ns) 

July 01- 

May 02 

-Disturbaces 

-Total Consumption 

-0.7354 -0.7354 -0.8037 Feb 00- 

Sept 01 

-Disturbaces 

-Prices first differences of 

prices 

0.0702 -0.3529 -0.3953 Feb 00- 

July 02 

-Disturbaces 

- Disturbaces first 

differences 

-0.4119 -0.6809 -0.7021 Feb 00- 

June 02 

March 00 

-July 01  

-Disturbaces 

- Total Cons. first 

differences 

0.2429 0.6896 0.7455 Feb 00-July 06 

May 00-Dec 06 

-Disturbances volatility  

–Price detrended 

0.1545 0.4418 -0.2248 

(ns) 

Feb 00-Dec 02 
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Figure 2. Example of LOS in the CRP obtained using Disturbances (D), and first differences of 

Total Consumption (Tfd). 

 

3. CONCLUSIONS 

The main conclusions of Section 1 of this report i.e the analysis of electricity spot prices in the 

Nordic region are that R/S analysis confirms their long range correlation and antiperistence. Stable 

distribution fitting has characterized the electricity spot price first difference from the statistical 

point of view confirming that the distribution is “fat tail” and that extreme events far from the mean 

value have higher probability to occur in comparison with a Gaussian distribution. Applying  

Recurrence Quantification Analysis and in particular two measures: DET and LAM we were able to 

distinguish between real and surrogate data sets. Moreover the same measure demonstrated to be 

able to detect the time windows of higher volatility and in this way they provide a bridge between 

the concept of volatility as dispersion and volatility as lack of predictability i.e. lack of determinism. 

The main conclusions of Section 2 of this report i.e. analysed possible correlations between 

electricity prices and disturbances in the Nordic Region, are that a strong linear correlation (R>0.7) 

exists between the volatility of disturbances and the de-trended spot price  if we consider mean of 

the time series on windows of six or twelve months. Using the Cross Correlation Function i.e. 

shifting the time series one in respect to the other some correlations increases but the one between 
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Disturbances and Prices never reaches values higher than 0.4, anyway it has a regular oscillating 

behaviour in respect to the delay and this can be a sign of similarity between the two dynamics. 

Finally we have applied Cross Recurrence Plot analysis, which gives an extension of the Cross 

Correlation Function and it helps to detect portion of the time series that are linear correlated. We 

have demonstrated that some correlations increases. We found time window in which the linear 

correlation between disturbances and total consumption and disturbances and  spot prices increases 

but the  correlation values are not always significative if we apply a t-test. The only disadvantage of 

CRP is that we can apply it to extract reliable information only if we have a minimum amount of 

data 
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1. Introduction 

The complex behaviour of financial time series, which linear stochastic models are not able to account for 

(Mantegna & Stanley, 2000; Johnson et al., 2003), has been attributed to the fact that financial markets are 

nonlinear stochastic, chaotic or a combination of both. Specifically, in the last decades there have been a 

considerable amount of discussion about the characterization of financial time series using the theory of 

Brownian motion (Osborne,1959; Malkiel, 1990), fractional Brownian motion (Mandelbrot, 1998), non-

linearity (Brock et al., 1991), chaos and fractals (Hsieh, 1991; Lorenz, 1993; Peters, 1996), scaling behaviour 

(Mantegna and Stanley, 1995 and 1996), and self organized criticality (Bak and Chen, 1991; Shlesinger et al., 

1993). The problem of characterizing financial time series is still an open question. Most of the test developed 

in the area of economic theory, provide evidence of nonlinear dynamics, which is a necessary but not sufficient 

condition for chaos. This nonlinearity may be deterministic or not deterministic. In fact, there is no convincing 

evidence of deterministic low-dimensionality in price series (Scheinkman and LeBaron, 1989; Papaioannou 

and Karytinos, 1995) and the claims of low-dimensional chaos have never been well-justified. For example, 

Andreadis (2000) analysing the S&P 500 index time series favours the stochastic hypothesis, whereas 

Friederich et al. (2000), using the high frequency price changes of the US dollar-German Mark support the 

analogy of turbulence and financial data (Mantenga and Stanley, 1996). Therefore, even though there is no 

conclusive evidence of low dimension deterministic (chaotic) structure, in the last few years, nonlinear time 

series analysis has expanded rapidly in the fields of Economics and Finance. This is also due to the fact that 

economic and financial time series seem to provide a promising area for the development, testing and 

application of nonlinear techniques (Soofi and Cao, 2002) and the fact that high frequency financial time series 

are readily available. 

Between these time series, energy spot prices have also been analysed with several nonlinear techniques. 

Weron and Przybylowicz (2000) studied the electricity prices using Hurst R/S analysis and showed that they 

are anti-persistent with a Hurst exponent lower that 0.5. Using another technique, the Average Wavelet 

coefficient method, Simonsen (2003) calculated also the Hurst exponent and obtained a value of H≈0.41 in 

agreement also with another energy spot prices time series. In a recent study, Bask et al. (2007) estimated the 

Lyapunov exponents and concluded that the dynamic system that generates these prices appeared to be chaotic 

for the period July 1, 1999 to September 30, 2000. The question of modelling spot electricity prices has also 

been addressed by several researchers. Because of the high volatility in Nord Pool electricity prices, Byström 

(2005) applied extreme value theory (EVT) to investigate the tails of the price change distribution and then 

used the peaks-over-threshold (POT) method to deals with the data that exceed the threshold. Then he used a 

combined AR and GARCH model to fit the filtered time series to estimate as well as to forecast the time series. 

Along the same lines, Perelló et al. (2007) proposed a GARCH model for the spot price. Weron et al. (2004) fit 

a jump diffusion and regime switching model to Nordic Pool spot prices. Vehviläinen and Pyykkönen (2005) 

developed a stochastic factor based approach to mid-term modelling of spot prices taking into account climate 

data, hydro-balance, base load supply and the underlying mechanisms in spot price generation. The model was 

able to provide simulated values for the fundamental data, demand and supply information, and pricing 

strategies. 
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In this work we have applied non-linear time series techniques the Nordic spot electricity market data. The 

time series are given in two periods, from May 1992 to December 1998 and from January 1999 to January 

2007. Our main interest was on trying to classify these series and analysing if their dynamical behaviour were 

in some way correlated with known events, e.g. the evolution of the Nord Pool and the climatic factors. This 

work is a first step in the direction of finding correlation of some features of the time series with the frequency 

and intensity of blackouts. 

First, a preliminary study was carried out with the aim of characterising the time series in terms of power 

spectral distribution, long term memory (R/S analysis), stationarity (space-time separation plots) and tails 

(stable distributions). Surrogate time series were also generated to test if the original time series were similar to 

a stationary Gaussian linear process. In a second step, state space reconstruction parameters: time delay and 

embedding dimension were used to carry out the analysis of these two series in the reconstructed state space. 

We applied Recurrence Quantification Analysis (RQA) (Webber and Zbilut, 1994), which is based on the 

definition of several parameters that allows the quantification of the Recurrence Plots (RP) introduced by 

Eckmann et al. (1987). The RQA analysis of both time series has shown a certain coherent structure with a 

regime shift in the first time series. Moreover, the RQA analysis was repeatedly performed on 720-point epochs 

(approx. one month) in order to analyse the dynamic information obtained. Neighbouring epochs were shifted 

also by 720 points and the nonlinear variables: %recurrence, %determinism, %laminarity and trapping time 

obtained for the time series analysed. A similar analysis has also been performed with the surrogate time series. 

As discussed in the report, it is possible to correlate certain events with changes in %recurrence, 

%determinism, %laminarity and trap time. Furthermore, the RQA method allows distinguishing the original 

time from the surrogate the time series, indicating a certain nonlinear behaviour in the original series. The 

preliminary results following the analysis of these series have shown that there are some similarities in terms of 

certain statistical characteristics, but also differences with other high frequency financial time series (Strozzi et 

al., 2002; Strozzi et al., 2007). Finally, we used two RQA measures, %determinism and %laminarity, for 

developing a new measure of volatility which is able of detecting important historical and meteorological 

events with better resolution than by measuring the time series standard deviation. 

2. Data provision and treatment 

We have analyzed hourly data from the Nord Pool system spot prices. The series is divided into two parts. 

In the first part, that goes from 4th May 1992 until 31st December 1998 and comprises 58,392 data points 

(fig.1), the prices are indicated in Norwegian Krone (NOK)/MWh, whereas in the second time series that goes 

from 1st January 1999 until 26th January 2007 and comprises 70,752 data points (fig.2), the prices are expressed 

in EUR/MWh. 
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Figure 1.Spot prices in the Nordic electricity market (Nord Pool) from May 1992 until December 1998. 

 
Figure 2. Spot prices in the Nordic electricity market (Nord Pool) from January 1997 until January 2007. 

2.1. Data treatment 

We have considered the prices time series as well as the corresponding logarithmic returns over the time 

horizon ∆t, defined as: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆−

=∆ )(
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ttP
tPtr t         (1) 

Figures 3 and 4 show the hourly returns for the two prices time series considered. 
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Figure 3.Hourly logarithmic return (Eq. 1) for the spot prices in the Nordic electricity market (Nord Pool) from May 1992 

until December 1998. 

 
Figure 4. Hourly logarithmic return (Eq. 1) for the spot prices in the Nordic electricity market (Nord Pool) from January 

1997 until January 2007. 

2.2. Historical background 

Electricity deregulation started in individual countries, notably United Kingdom (1990) and Norway (1991), 

and the Norwegian effort spread to the rest of the Nordic region before the European Union’s 1996 Electricity 

Directive started to have real impact. This directive required that all EU countries opened up their electricity 

markets to competition to consumers of more than 9 GWh by 2003. The various countries are free to choose 

their own methods of deregulation in accordance to the criteria of the Directive. There were no provisions in 

the Directive for a power pool or the establishment of financial markets (Mork, 2001). The Nordic electricity 

market, known as Nord Pool (http://www.nordpool.no) was created in 1993 and it is owned by the two national 

grid companies, Statnett SF in Norway (50%) and Affärverket Svensa Kraftnät in Sweden (50%). It was 
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established as a consequence of the decision in 1991 by the Norwegian Parliament’s to deregulate the market 

for power trading. 

Therefore, between 1992 and 1995 only Norway contributed to the market, in 1996 a joint Norwegian-

Swedish power exchange was started-up and the power exchange was renamed Nod Pool ASA. Finland started 

a power exchange market of its own, EL-EX, in 1996, and joined Nord Pool in 1997. Beginning of 15th June 

1998, Finland became an independent price area on the Nord Pool Exchange. The western part of Denmark 

(Jutland and Funen) has been part of the Nordic electric power market since 1 July 1999, whereas the eastern 

part of Denmark entered after 1st October 2000. On 5th October 2005 also the German area KONTEK was 

added in the Nord Pool exchange market. Table 1 summarises the historical evolution of the Nord Pool, 

whereas in Table 2 the deregulation process is also indicated. 

 
Table 1. Nord Pool participating countries and dates of entry. 

 

Countries Date of entry of new country 
(dd/mm/yy) 

Norway 1/1/93 
Norway and Sweden 1/1/96 
Norway, Sweden and Finland  29/12/97 
Norway, Sweden, Finland 
and western Denmark  

1/7/99 

Norway, Sweden, Finland, 
western and eastern Denmark  

1/10/00 

KONTEK (Germany) 5/10/05 
 

Table 2. Summary of the deregulation process in Nord Pool members. 
 

 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2005 2004 2005 

Norway                
Sweden                
Finland                
West 
Denmark 

               

East 
Denmark 

               

Kontek                
 

green= deregulation process; blue= NordPool member 
 
The new bidding area named KT offered geographic access to the Vattenfall Europe Transmission control 

area from East Denmark and allowed Nord Pool to compete directly with European Energy Exchange (EEX). 

Kontek cable connects Zealand and Germany. Nord Pool owns 17.39% of the shares of EEX and proposed a 

common market with EEX, but EEX did not agree (Kristiansen, 2006; 2007). Nevertheless the existence of a 

common electricity market, there are still national transmission system operators and some differences with 

respect to transmission pricing. 



F. Strozzi [et al.], Application of non-linear time series analysis techniques to the nordic spot electricity market data. 
 

7 

The spot market operated by Nord Pool is an exchange market where participants’ trade power contracts for 

physical delivery the next day and is thus referred to as a day-ahead market. The spot market is based on an 

auction with bids for purchase and sale of power contracts of 1-h duration covering the 24 h of the following 

day. At the deadline for the collection of all buy and sell orders the information is gathered into aggregate 

supply and demand curves for each power-delivery hour. From these supply and demand curves the 

equilibrium spot prices-referred to as the system prices-are calculated. 

When no grid congestion exists there will be a single identical price across the area with no congestions. 

However, when there is insufficient transmission capacity in a sector of the grid, grid congestion will arise and 

the market system will establish different “price areas”. This is because the Nordic market is partitioned into 

separate bidding areas which become separate price areas when the contractual flow between bidding areas 

exceeds the capacity allocated by the transmission system operators for spot contracts. In the case of congestion 

the transmission system operators ask generators to reduce (increase) production or large buyer to increase 

(decrease) demand until excess of supply or demand are eliminated. The fact that separate prices may coexist 

depending upon regional supply and demand causes the relevant market definition to vary with time. 

Sometimes the prices are of the entire Nordic region. Sometimes more than one price area exists (Haldrup and 

Nielsen, 2006). Thus, whenever the relevant interconnector capacity is insufficient the Nord Pool area is 

divided into two or several “price areas”. Sweden is always one single price area, and the same applies to 

Finland. In Denmark the transmission system is divided into two parts, West and East, and consequently there 

are two price areas. In Norway the congestion charges effectively divides the country into five price areas. In 

addition to the “area prices” there is a “system price”. This price is determined under the assumption that no 

transmission constraint is binding. The system price is the reference price in the financial contracts (Amundsen 

and Bergman, 2007). Haldrup and Nielsen (2006) found that looking to hourly data from 3.1.2000 to 

25.10.2003, 34.24% of time all the prices for the entire Nordic region where identical. Two price areas existed 

in 34.55% and three in 20.86 % of the time. In only 11 hours there was complete congestion and six different 

price areas existed i.e. one for each geographical market. Despite these differences, in this work we will only 

consider “system price”. 

The variation of the prices in the Nord pool system is well correlated with the variations in precipitation in 

Norway and Sweden because of its strong dependence of the hydropower generation. Table 3 summarises the 

climatic conditions during the last years. The 1996 was a “dry” year, while 1997-2000 was a series of “wet” 

years. The 2000 was not very “wet” and the first part of 2001 was quite “dry” but the autumn was very rainy 

and 2001 started well with a water reservoir above the normal. Very special hydrological conditions appeared 

during the autumn and winter season of 2002-2003 with a sharp decline of precipitation. This was a rare event 

that could happen only every 100-200 years (Weron et al., 2004). The result was the increasing of spot prices in 

2003. 
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Table 3. Summary of meteorological conditions: Dry and wet years. 

 
year state Period considered 
1996 dry 1.1.96-31.12.96 
1997-2000 wet 1.1.97-31.12.99 
2000 not very wet 1.1.2000-31.12.2000 
First part 2001 dry 1.1.2001-31.8.2001 
Autumn 2001 very wet 1.9.2001-31.12.2001 
2002-2003 very dry (rare event) 1.1.2002-31.12.2003 

 
By looking into figs. 1-2 and comparing with Table 3, we can observe these correlations in the electricity 

price. However, weather conditions are not able to explain all the features in the time series. For example, the 

relative sharp price increase between 2000 and 2001 could be explained by a combination of the market power 

exercised by the mayor generators, the increased demand and higher fuel prices (Weron et al., 2004). Moreover 

spot prices can increase tenfold during a single hour. Jumps in the spot prices are an effect of extreme load 

fluctuations, caused by severe weather conditions often in combination with generation outages or transmission 

failures. These spikes are normally quite short lived, and as soon as the weather phenomenon or outage is over, 

prices fall back to a normal level. Jumps tend to be more severe during high price periods and a positive jump 

may be followed by a negative jump to capture the rapid decline of electricity prices (Weron et al., 2004). 

2.3. Material and methods 

There are different freely available software packages on the Internet that may be used to perform non-

linear time series analysis. In this work, we have used several of them for different purposes as indicated 

bellow. 

One of the most complete is the TISEAN software package (http://www.mpipks-dresden.mpg.de/~tisean) 

which has incorporated an impressive quantity of algorithms developed in the nonlinear time series analysis 

field (Kantz and Schreiber, 1997). There is a version for MATLAB® users developed at Göttingen University, 

called TSTOOL, that can be download at http://www.physik3.gwdg.de/tstool/. Furthermore, a commercially 

available software package developed by Abarbanel and co-workers (Abarbanel, 1996) and commercialised by 

Randle Inc., called Csp, can be found at http://www.chaotic.com/. 

Concerning Recurrence Quantification Analysis, the original programs developed by Weber and Zbilut 

(1994) can be download at at http://homepages.luc.edu/~cwebber., whereas a MATLAB® version of RQA 

developed at the University of Postdam called CRP toolbox can be found at http://tocsy.agnld.uni-postdam.de 

(Marwan et al., 2007). In addition, there is a commercially available version called VRA (Visual Recurrence 

Analysis) that can be obtained at http://home.netcom.com/~eugenek/download.html 

Finally, the analysis of stable distributions has been carried out using the program STABLE for univariate 

data (http://www.cas.american.edu/~jpnolan). 
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3. Embedding theory 

The mathematical basis of continuous dynamical modelling is formed by differential equations of the 

following type: 

),( αxFx
=

dt
d

         (2) 

where the real variable t denotes time, x = (x1, x2,…, xn) represents the state variables of the system, 

depending on time t and on the initial conditions, and αj are parameters of the system, while F = (F1,F2,…, 

Fn) is a nonlinear function of these variables and parameters. Actual states of these systems are described by 

the vector variable x consisting of n independent components. Each state of the system corresponds to a 

definite point in phase space, which is called phase point. The time variation of the state of the system is 

represented as a motion along some curve called phase trajectory. 

Experimentally, it is not always possible to measure the complete state of a system and, normally, when 

analysing a dynamical system, we have access to few observable quantities which, in the absence of noise, are 

related to the state space coordinates by: 

))(()( tts xh=          (3) 

where h is normally an unknown nonlinear function called measurement function. The theory of embedding 

is a way to move from a temporal time series of measurements to a state space ''similar'' -in a topological sense- 

to that of the underlying dynamical system we are interested in analysing. Techniques of state space 

reconstruction were introduced by Packard et al. (1981) and Takens (1981), which showed that it is possible to 

address this problem using measurements of a sufficient long time series, s(t), of the dynamical system of 

interest. Takens proved that, under certain conditions, the dynamics on the attractor of the underlying original 

system has a one-to-one correspondence with measurements of a limited number of variables. This observation 

opened a new field of research. In fact, if the equations defining the underlying dynamical system are not 

known, and we are not able to measure all the state space variables, the state space of the original system is not 

directly accessible to us. However, if by measuring few variables we are able to reconstruct a one-to-one 

correspondence between the reconstructed state space and the original, this means that it is possible to identify 

unambiguously the original state space from measurements. Embedding theory has opened a new field of 

research: nonlinear time series analysis (Tong, 1990; Abarbanel, 1996; Kantz and Schreiber, 1997; Diks, 1999, 

amongst others). 

In order to explain the relationship that occurs between the reconstructed and the real state space, let us 

consider the following dynamical system 

),,(   ; )( 321 xxx
dt
d

== xxFx
       (4) 

We can define ),,( 321 yyy=y  as follows: )/,/,( 2
1

2
11 dtxddtdxx=y , then the equations of motion 

take the form 

2
1 y

dt
dy

=  
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3
2 y

dt
dy

=          (5) 

),,( 321
3 yyy

dt
dy

G=  

for some function G. In this coordinate system, modelling the dynamics reduces to constructing the single 

function G of three variables, rather than three separate functions, each of three variables. 

In this way we may proceed from the state space ),,( 321 xxx  to the space of 

derivatives )/,/,( 2
1

2
11 dtxddtdxx . The dynamics in this new space will be related to the dynamics of the 

original space by a nonlinear transformation which is called the reconstruction map. The extension of this 

approach to higher-dimensional dynamical systems is straightforward by considering higher derivatives. 

The advantage in considering the space of derivatives is that we can approximate them from measurements 

of x1. But what kind of information about the original space is preserved in the new one? 

There are two types of preserved information: qualitative and quantitative. Qualitative information is that 

which allows a qualitative description of the dynamics described by topological invariants, such as for instance, 

singularity of the field, closeness of an orbit, stability of a fixed point, etc. (Gilmore, 1998) Quantitative 

information can be of two different types: geometrical and dynamical. Geometrical properties (Grassberger, 

1983) consist on fractal dimensions or scaling functions. Dynamical methods (Wolf et al., 1985) rely on the 

estimation of local and global Lyapunov exponents and Lyapunov dimensions. In order to guarantee that the 

quantities computed for the reconstructed attractor are identical to those in the original state space, we require 

that the structure of the tangent space, i.e. the linearization of the dynamics at any point in the state space, is 

preserved by the reconstruction process. The problem is to see under what conditions this can happen. 

Embedding theorems try to shed some light on this problem. 

Let s(t) be the measure of some variable of our system, see Eq. (3). Takens (1981) shown that instead of 

derivatives, { }),...(),(),( tststs &&& , one can use delay coordinates, { }),...2(),(),( ttsttsts ∆+∆+ , where ∆t is 

a suitably chosen time delay. In fact, looking at the following approximation of the derivative of s(t): 

t
tstts

dt
tds

∆
−∆+

≅
)()()(

       (6) 

22

2

2
)()(2)2()(

t
tsttstts

dt
tsd

∆
+∆+−∆+

≅      (7) 

it is clear that the new information brought from every new derivative is contained in the series of the delay 

coordinates. The advantage of using delay coordinates instead of derivatives is that in case of high dimensions 

high order derivatives will tend to amplify considerably the noise in the measurements. 

Another generally used method, for state space reconstruction, is singular value decomposition (SVD), 

otherwise known as Karhunen-Loève decomposition, which was proposed by Broomhead and King (1986) in 

this context. The simplest way to implement this procedure is to compute the covariance matrix of the signal 

with itself and then to compute the eigenvalues, i.e. if s(t) is the signal at time t, the elements of the covariance 

matrix Cov are: 



F. Strozzi [et al.], Application of non-linear time series analysis techniques to the nordic spot electricity market data. 
 

11 

T
ij tjitstsc ))(()( −+=        (8) 

where i and j go from 1 to n where n is bigger or equal to the dimension of the system in this new space. 

The eigenvectors of Cov define a new coordinate system. Typically, one calculates the dimension of the 

reconstructed phase space by considering only eigenvectors whose eigenvalues are “large”. 

Then, from the space of derivatives, time lags or eigenvectors, it is possible to extract information about the 

underlying system, which was generating the measured data. 

In order to preserve the structure of tangent space and then the dynamic characteristic of it, the relation 

between the reconstructed space and the original one has to be an embedding of a compact smooth manifold 

into R2n+1, which means a one-to-one immersion i.e. a one-to-one C1 map with Jacobian which has full rank 

everywhere. The point now is to show under what conditions the reconstruction forms an embedding. 

A general existence theorem for embedding in Euclidean spaces was given by Whitney (1936) who proved 

that a smooth (C2) n-dimensional manifold may be embedded in R2n+1. This theorem is the basis of the time 

delay reconstruction (or embedding) techniques for phase space portraits from time series measurements 

proposed by Takens (1981), who proved that, under certain circumstances, if dE -the dimension of the 

reconstructed state vector, normally called the embedding dimension- is greater or equal to 2n+1, where n is 

the dimension of the original state space, then the reconstructed states fill out a reconstructed state space which 

is diffeomorphic, i.e. a one-to-one differentiable mapping with a differentiable inverse, to the original system. 

Generally speaking, the embedding dimension is the minimal number of dynamical variables with which we 

can describe the attractor when we know only one of its state variables or a function related to them. 

Apart from the methods mentioned above, there are several other methods of reconstructing state space 

from the observed quantity s(t) that have appeared in the literature -for a critical review see Breeden and 

Packard (1994). Although the method of reconstruction can make a big difference in the quality of the resulting 

coordinates, it is not clear in general which method is the best. The lack of a unique solution for all cases is due 

in part to the presence of noise and to the finite length of the available data sets. 

For Takens' theorem to be valid we need to assume that the underlying dynamics is deterministic and that 

both the dynamics and the observations are autonomous, i.e. F and h in Eqs. (2) and (3) depend only on x and 

not on t. Unfortunately, this is not the case of many systems in the field of control and communications which 

are designed to process some arbitrary input and hence, cannot be treated as autonomous. The extension of 

Takens' theorem to deterministically forced stochastic systems has been recently developed by Stark et al. 

(1997). In particular they proved that such an extension is possible for deterministically forced systems even 

when the forcing function is unknown, for input-output systems (which are just deterministic systems forced by 

an arbitrary input sequence) and for irregular sampled systems. 

Another problem in embedding theory is that Takens' theorem has been proven for noise-free systems. 

Unfortunately, there is always a certain amount of noise, σ(t), in real data. Such noise can appear in both the 

measurements and the dynamics (Diks, 1999). Observational noise, i.e. s(t)=h(x(t))+σ(t), does not affect the 

evolution of the dynamical system, whereas dynamical noise acts directly on the state of the dynamical system 

influencing its evolution, for example: dx/dt=F(x,α)+σ(t). 
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The effects of relatively small amount of observational noise may put severe restrictions on the 

characterisation and estimation of the properties of the underlying dynamical system. In order to remove the 

observational noise different possibilities are available which can be broadly divided into two categories: linear 

filters (Badii et al., 1988) and special nonlinear noise reduction methods that make use of the deterministic 

origin of the signal we are interested in (for a recent survey see: Kostelich and Schreiber, 1993; Davies, 1994). 

However, in the case of dynamical noise, the reconstruction theorem does not apply and it may even be 

impossible to reconstruct the state of the system (Takens, 1996). In this situation, systems must be examined 

case by case before analysis. In particular, Stark et al. (1997) showed that the extension of Takens' theorem is 

possible for deterministic systems driven by some stochastic process. 

3.1. Embedding parameters 

The embedding theorem is important because it gives a rigorous justification for the state space 

reconstruction. However, Takens' theorem is true for the unrealistic case of an infinite, noise-free, number of 

points. Takens showed that, in this case, the choice of the time delay is not relevant, and gave indications only 

on the choice of the embedding dimension. 

Nevertheless, in real applications, the proper choice of the time delay τ and the calculation of an embedding 

dimension, dE, are fundamental for starting to analyse the data. As a matter of fact, a lot of research on state 

space reconstruction has centred on the problems of choosing the time delay and the embedding dimension 

which we can call the parameters of the reconstruction for delay coordinates. 

If the time delay chosen is too small, there is almost no difference between the elements of the delay 

vectors, since that all points are accumulated around the bisectrix of the embedding space: this is called 

redundancy (Casdagli et al., 1991). However, when τ is very large, the different co-ordinates may be almost 

uncorrelated. In this case the reconstructed trajectory may become very complicated, even if the underlying 

''true'' trajectory is simple: this is called irrelevance. Unfortunately no rigorous way exists of determining the 

optimal value of τ. Moreover, similar problems are encountered for the embedding dimension. Working in a 

dimension larger than the minimum required by the data will lead to excessive requirements in terms of the 

number of data points and computation times necessary when investigating different questions such as, for 

example invariants calculation, prediction, etc. Furthermore, noise by definition has an infinite embedding 

dimension, so it will tend to occupy the additional dimensions of the embedding space where no real dynamics 

is operating and, hence, it will increase the error in the subsequent calculations. On the other hand, by selecting 

an embedding dimension lower than required, we would not be able to unfold the underlying dynamics, i.e. the 

calculations would be wrong since we do not have an embedding. 

When derivatives, { }),...(),(),( tststs &&& , or SVD are employed there is no need to determine an optimum 

time delay. Nevertheless, for the case of derivatives, the reconstruction will depend on the way they are 

numerically calculated (which turns out to depend on different parameters, see for example (Burden and Faires, 

1996) for a review of numerical calculation of derivatives). In practice for each method we will carry out a 

slightly different state space reconstruction. For the case of SVD, the time delay chosen is unitary, but there is 

still the problem of choosing the time scale or window in which the calculations are performed. Broomhead and 
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King (1986) in fact, concluded that the effects of window length should be carefully investigated each time a 

state space reconstruction is carried out. 

4. Chaotic time series analysis  

Nonlinear analysis of experimental time series has, among its goals, the separation of high-dimensional and 

stochastic dynamics from low-dimensional deterministic signals, estimation of system parameters or invariants 

(characterisation), and, finally, prediction, modelling and control. 

Unfortunately it seems very difficult to tell whether a series is stochastic or deterministically chaotic or 

some combination of these categories. More generally, the extent to which a non-linear deterministic process 

retains its properties when corrupted by noise is also unclear. The noise can affect a system in different way, 

either in an additive way or as a measurement error, even though the equations of the system remain 

deterministic. 

 

 
Figure 5. Schematic representation of nonlinear time series analysis using delay coordinate embedding (Strozzi and 

Zaldívar, 2002). 



Liuc Papers n. 200, marzo 2007 
 

14 

A schematic representation of the different steps is given in Fig. 5. Since a single reliable statistical test for 

chaoticity is not available, combining multiple tests is a crucial aspect, specially when one is dealing with 

limited and noisy data sets like in economic and financial time series. 

There are different aspects that should be carefully studied before attempting to go further using nonlinear 

time series analysis methods. A long and exhaustive discussion can be found in Schreiber (1998) and the basic 

methodologies will be presented during the analysis part. Here, we are briefly going to indicate the main 

problems one should be aware of. These can be summarized as follows: 

• has the phenomenon been sufficiently sampled?; 

• is the data set stationary or can one remove the nonstationary part?; 

• is the level of noise sufficiently low so that one can obtain useful information using nonlinear time 

series techniques? 

Some tests to study these questions have been recently implemented in the TISEAN software package 

(Hegger et al., 1999), which has incorporated a substantial quantity of algorithms developed for nonlinear time 

series analysis. 

The problem of the number of samples needed to carry out state space reconstruction is related to the 

dimensionality of the problem we are dealing with. In order to characterize properly the underlying dynamics 

from the observed time series, we need to sample properly the phase space in which our dynamical system lies. 

As the dimension of the underlying system increases, a higher number of samples is needed. Ruelle (1990) 

discussed this problem, and based on simple geometrical considerations, he arrived at the following conclusion: 

if the calculated dimension of our system is well below 2log10m, where m is the total number of points in the 

original time series, then we are using a sufficient number of data points. Of course having a sufficient number 

of data points is a necessary but not a sufficient condition for reliable nonlinear time series analysis. 

Another related problem is the sampling rate. Consider the case when we are sampling data from a, 

presumably, chaotic system. Chaotic systems, like stochastic ones, are unpredictable in the long run. This long 

run is related to the speed at which nearby trajectories diverge in phase space, which turns out to be related to 

the Lyapunov exponents of the system under study. Hence, if we are sampling at a rate slower than our 

predictability window, even though the underlying system is chaotic, we will find that our system behaves as a 

stochastic one. In this situation, if one suspects that the underlying system is deterministic, the best thing to do 

is to repeat the experiment by increasing the sampling rate. Interpolating between data points would be of no 

use as no new information is introduced. 

A time series is said to be strictly stationary if its statistical distribution does not change across time. More 

specifically, suppose we have a set of m samples of the series s(t) made at times t1 through tm, these need not 

be contiguous times. Strict stationarity implies that the joint probability density function of those m samples is 

identical to the joint probability distribution of another m samples taken at times t1+k through tm+k. This must 

be true for all the choices of m and k, as well for the m relative sample times. Why is stationarity so important? 

Because almost all methods developed by linear and nonlinear time series analysis assume that the time series 

we are analysing is stationary, which implies that the parameters of the system that has generated the time 

series, remain constant. For this reason time-series analysis often requires one to turn a nonstationary series into 

a stationary one so as to use these theories. Unfortunately, nonstationary signals are very common in particular 
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when observing natural or man-made phenomena, and in some cases the nonstationary components, such as the 

trend, may sometimes be of more interest than that of the stationary part obtained by removing the trend or the 

seasonal variation from the signal. 

Even though a precise definition of stationarity exists, there is no magic formula for deciding whether a 

series is stationary or not. However, strong violations of the basic requirements that the dynamical properties of 

the system must not change, beyond their statistical fluctuations, can be checked simply by measuring such 

properties, i.e. mean, variance, spectral components, correlations, etc., for several segments of the data set. 

Nonlinear time series analysis has also developed its own techniques to study nonstationarity as we will see 

bellow. 

4.1. Preliminary Analysis 

4.1.1. Surrogate time series generation 
If the dynamics that has generated the time series is not known or if the data are noisy, it is important to 

investigate whether the amount of nonlinear deterministic dependencies is worth analyzing further or whether 

the series can be considered as stochastic. Hence, one of the first steps before applying nonlinear techniques to 

the Nord Pool data is to investigate if the use of such advanced techniques is justified by the data. The main 

reason behind this reasoning is that linear stochastic processes can create very complicated looking signals and 

that not all the structures that we find in a data set are likely to be due to nonlinear dynamics going on within 

the system. The method of surrogate data, see for example Schreiber and Schmitz (2000) for a review, has 

become a useful tool to address the question if the irregularity of the data is most likely due to nonlinear 

deterministic structure or rather due to random inputs to the system or fluctuations in the parameters. 

The method of surrogate data, which was first introduced by Theiler et al. (1992) in nonlinear time series 

analysis, consists of generating an ensemble of “surrogate” data sets similar to the original time series, but 

consistent with the null hypothesis, usually that the data have been created by a stationary Gaussian linear 

process, and of computing a discriminating statistic for the original and for each of the surrogate data sets 

In general a linear stochastic process can be described by 
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where nη  are independent Gaussian random numbers with zero mean and unit variance and ai, bi, M1 and 

M2 are constants. This is called an ARMA(M1, M2) process. Now we want to test the hypothesis that the data 

could be explained by a linear model. A statistical significance test consists on the following steps: a/ we 

compute some nonlinear observable 0λ  from the data; b/ we observe if the value obtained suggests that the 

data are nonlinear and we calculate the same quantity from a number of comparable linear models. If the results 

are completely different the data might be nonlinear. If we have any theory for the distribution of the values of 

iλ  for linear stochastic process, we can estimate their distribution using the method of surrogate data. The null 

hypothesis that we want to test is that the data results from a Gaussian linear stochastic process. Then we 

should specify the level of significance. If we allow for a 5% chance that we reject the null hypothesis although 
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it is in fact true (valid at a 95% significance level) then more than one wrong result out of 19 is usually not 

considered acceptable (Schreiber and Schmitz, 2000). How to make surrogate data sets? Let we suppose that 

the data came from a stationary linear stochastic process with Gaussian inputs. We consider the mean, the 

variance and the autocorrelation function of the real data or equivalently the mean and the power spectrum. 

We can create surrogate data by taking their fast (discrete) Fourier transform (FFT) and multiplying it by a 

random phase parameter uniformly distributed in [0,2π[, then it is possible to compute the inverse of FFT and 

we have a time series with the prescribed spectrum. Different realization of the random phase gives new 

surrogate data. This process of phase randomisation preserves the Gaussian distribution. 

 
Figure 6. Four surrogate time series generated for the Nord pool spot price in Norwegian Krone (Fig. 1) using the TISEAN 

software package (Hegger et al., 1999) with surrogates program. 
 
In this work, we have created 19 surrogate data sets (same mean, variance and Fourier power spectrum) for 

each Nord Pool spot prices time series, for example see Fig. 6, these time series data comes from a stationary 

linear stochastic process with Gaussian inputs. 

In addition, we have also considered another null hypothesis: the data are simply temporally uncorrelated 

noise i.e. the null hypothesis is any correlation at all. Surrogate data in this case are generated by a random 

shuffling of the original time series. Also, in this case, we have created 19 surrogate data sets from the original 

time series. 
 

4.1.2. R/S Analysis 
A tool for studying long-term memory and fractality of a time series is the Rescaled Range analysis (R/S 

analysis) first introduced by Hurst (1951) in hydrology. Mandelbrot (1983) argued that R/S analysis is a more 

powerful tool in detecting long range dependence when compared to more conventional analysis like 

autocorrelation analysis, variance ratios and spectral analysis. In this method, one measures how the range of 

cumulative deviations from the mean of the series is changing with the time. It has been found that, for some 

time series, the dependence of R/S on the number of data points (or time) follows an empirical power law 
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described as (R/S)n=(R/S)0 nH, where (R/S)0 is a constant, n is the time index for periods of different length, 

and H is the Hurst exponent. (R/S)n is defined as 
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where A(t,n) is the accumulated departure of the time series s(t) from the time average over the time interval 
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The Hurst exponent, 0≤H≤1, is equal to 0.5 for random walk time series, <0.5 for anticorrelated series, and 

>0.5 for positively correlated series. The Hurst exponent is directly related to the "fractal dimension", which 

gives a measure of the roughness of a surface. The relationship between the fractal dimension, D, and the Hurst 

exponent, H, is: 

HD −= 2          (11) 

Hurst exponents quantify the correlation of a fractional Brownian motion. A fractional Brownian motion 

(fBm) is a random walk with a Hurst exponent different from 0.5 and then with a memory. The decaying of 

spectral density of a fBm has a relationship with the Hurst exponent as follow: 

αf
1

density spectral ∝        (12) 

where 12 += Hα . 

Financial time series have been found to exhibit some universal characteristics that resemble the scaling 

laws typical of natural systems in which large numbers of units interact. For instance, the Hurst exponent has 

been extensively applied by Peters (1996) to various capital markets and in most of the cases he has found 

persistent memory. 

A long memory process is a process with a random component, where a past event has a decaying effect on 

future events. The process has some memory of past events, which is "forgotten" as time moves forward. The 

mathematical definition of long memory processes is given in terms of autocorrelation. When a data set 

exhibits autocorrelation, a value xi at time ti is correlated with a value xi+d at time ti+d, where d is some time 

increment in the future. In a long memory process autocorrelation decays over time and the decay follows a 

power law, i.e 
β−= Ckkp )(          (13) 

where, C is a constant and p(k) is the autocorrelation function with lag k. The Hurst exponent is related to 

the exponent β by 

2
1 β

−=H          (14) 

In this work we have used the standard scaled windowed variance method (Cannon et al., 1997) to estimate 

H by linear regression of log(R/S) versus log(Windowsize). The results for the two original time series and the 

surrogate series are shown in Tables 4-5. As it can be seen both time series show antipersistence, H<0.5. This 
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has already been found by several researchers (Weron and Przybylowicz, 2000; Simonsen 2003; Perelló et al. 

2007, amongst others).In all cases, the Hurst exponents of the original time series are slightly higher than those 

of the linear surrogate time series but this does not mean that the value of H helps us to distinguish between the 

original time series and their surrogates, because H for the linear surrogate of NOK is higher than H for real 

EUR (Table 4). For the shuffled surrogate time series we can observe that H for surrogates is nearer to 0.5 

independently if we consider the surrogate of NOK or of EUR (Table 5). 

 
Table 4. Hurst exponents for the Nord pool and the surrogate linearly correlated time series. 

 
Data set H Data set H 

NOK 0.4406 EUR 0.2673
Surr01_nl 0.3632 Surr01_el 0.1231
Surr02_nl 0.3824 Surr02_el 0.0899
Surr03_nl 0.3399 Surr03_el 0.1402
Surr04_nl 0.3646 Surr04_el 0.1631
Surr05_nl 0.3276 Surr05_el 0.1597
Surr06_nl 0.4151 Surr06_el 0.1325
Surr07_nl 0.3480 Surr07_el 0.0914
Surr08_nl 0.3497 Surr08_el 0.2262
Surr09n_l 0.3125 Surr09_el 0.1063
Surr10_nl 0.3024 Surr10_el 0.1673
Surr11_nl 0.3396 Surr11_el 0.1434
Surr12_nl 0.3624 Surr12_el 0.1612
Surr13_nl 0.3795 Surr13_el 0.1990
Surr14_nl 0.3602 Surr14_el 0.1604
Surr15_nl 0.3574 Surr15_el 0.1368
Surr16_nl 0.3406 Surr16_el 0.2096
Surr17_nl 0.3874 Surr17_el 0.1814
Surr18_nl 0.3369 Surr18_el 0.1089
Surr19_nl 0.3774 Surr19_el 0.0905

 
 

Table 5. Hurst exponents for the Nord pool and the surrogate shuffled time series. 
 

Data set H Data set H 
NOK 0.4406 EUR 0.2673
Surr01_ns 0.4886 Surr01_es 0.4293
Surr02_ns 0.4842 Surr02_es 0.4293
Surr03_ns 0.4847 Surr03_es 0.4423
Surr04_ns 0.4773 Surr04_es 0.4136
Surr05_ns 0.4857 Surr05_es 0.4267
Surr06_ns 0.5036 Surr06_es 0.4437
Surr07_ns 0.4877 Surr07_es 0.4349
Surr08_ns 0.5026 Surr08_es 0.4238
Surr09_ns 0.4888 Surr09_es 0.4366
Surr10_ns 0.4846 Surr10_es 0.4274
Surr11_ns 0.4874 Surr11_es 0.4261
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Surr12_ns 0.4948 Surr12_es 0.4266
Surr13_ns 0.4848 Surr13_es 0.4315
Surr14_ns 0.4824 Surr14_es 0.4245
Surr15_ns 0.4690 Surr15_es 0.4279
Surr16_ns 0.4882 Surr16_es 0.4253
Surr17_ns 0.4780 Surr17_es 0.4292
Surr18_ns 0.4795 Surr18_es 0.4299
Surr19_ns 0.4798 Surr19_es 0.4270

 
 
4.1.3. Power Spectral Density 

The Fourier transform of a function s(t) is given by: 
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Here, the frequencies in physical units are fk=k/(N∆t), where k=-N/2,…,N/2 and ∆t is the sampling interval 

(1 hour in our case). The power spectrum of a process is defined to be the squared modulus of the continuous 

Fourier transform, 
2)(~)( fsfP = . The power spectrum is particularly useful for studying the main 

frequencies in a system, since there will be sharper or broader peaks at the dominant frequencies and their 

integer multiples, the harmonics. 

In Figures 7-8 we observe the power spectral density of Nord Pool time series. For both of them, we have 

found behaviour of the type 

αf
fP 1)( ∝          (17) 

where α is a positive real number. The values of α for Nord Pool time series and their surrogates are listed 

in Tables 6-7. 
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Figure 7. The power spectrum (log-log scale) , NOK (α=1.4612). 

 
 

 
Figure 8. The power spectrum (log-log scale) EUR (�=1.4562). 

Table 6. Power spectra trend α calculated using linear regression (LR) and Hurst exponent H. Real and linearly correlated 
data 
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Data set α (LR) α=2H+1 Data set α(PS) α=2H+1 
NOK 1.4612 1.8812 EUR 1.4562 1.5346 

Surr01_nl 1.3626 1.7264 Surr01_el 1.4281 1.2462 
Surr02_nl 1.3577 1.7648 Surr02_el 1.4453 1.1798 
Surr03_nl 1.3527 1.6798 Surr03_el 1.4296 1.2804 
Surr04_nl 1.3440 1.7292 Surr04_el 1.4546 1.3262 
Surr05_nl 1.4719 1.6552 Surr05_el 1.3914 1.3194 
Surr06_nl 1.4085 1.8302 Surr06_el 1.4300 1.2650 
Surr07_nl 1.3383 1.6960 Surr07_el 1.4140 1.1828 
Surr08_nl 1.3628 1.6994 Surr08_el 1.4131 1.4524 
Surr09_nl 1.3406 1.6250 Surr09_el 1.4558 1.2126 
Surr10_nl 1.3566 1.6048 Surr10_el 1.4289 1.3346 
Surr11_nl 1.3564 1.6792 Surr11_el 1.4466 1.2868 
Surr12_nl 1.3301 1.7248 Surr12_el 1.4404 1.3224 
Surr13_nl 1.3652 1.7590 Surr13_el 1.4276 1.3980 
Surr14_nl 1.3767 1.7204 Surr14_el 1.4330 1.3208 
Surr15_nl 1.3690 1.7148 Surr15_el 1.4341 1.2736 
Surr16_nl 1.3701 1.6812 Surr16_el 1.4506 1.4192 
Surr17_nl 1.3589 1.7748 Surr17_el 1.4455 1.3628 
Surr18_nl 1.3483 1.6738 Surr18_el 1.4554 1.2178 
Surr19_nl 1.3646 1.7548 Surr19_el 1.4666 1.1810 

 
 

Table 7. Power spectra trend α calculated using linear regression (LR) and Hurst exponent H. Real and shuffled data 
 

Data set α (LR) α=2H+1 Data set α(PS) α=2H+1 
NOK 1.4612 1.8812 EUR 1.4562 1.5346 

Surr01_ns 0.0100 1.0200 Surr001_es 0.0139 1.0278 
Surr02_ns 0.0106 1.0212 Surr002_es 0.0148 1.0296 
Surr03_ns 0.0150 1.0300 Surr003_es 0.0084 1.0168 
Surr04_ns 0.0294 1.0588 Surr004_es 0.0237 1.0474 
Surr05_ns 0.0200 1.0400 Surr005_es 0.0097 1.0194 
Surr06_ns 0.0151 1.0302 Surr006_es 0.0019 1.0038 
Surr07_ns 0.0212 1.0424 Surr007_es 0.0153 1.0306 
Surr08_ns 0.0099 1.0198 Surr008_es 0.0126 1.0252 
Surr09_ns 0.0243 1.0486 Surr009_es 0.0147 1.0294 
Surr10_ns 0.0208 1.0416 Surr010_es 0.0138 1.0276 
Surr11_ns 0.0216 1.0432 Surr011_es 0.0208 1.0416 
Surr12_ns 0.0183 1.0366 Surr012_es 0.0137 1.0274 
Surr13_ns 0.0218 1.0436 Surr013_es 0.0114 1.0228 
Surr14_ns 0.0265 1.0530 Surr014_es 0.0154 1.0308 
Surr15_ns 0.0261 1.0522 Surr015_es 0.0182 1.0364 
Surr16_ns 0.0124 1.0248 Surr016_es 0.0247 1.0494 
Surr17_ns 0.0192 1.0384 Surr017_es 0.0177 1.0354 
Surr18_ns 0.0160 1.0320 Surr018_es 0.0106 1.0212 
Surr19_ns 0.0133 1.0266 Surr019_es 0.0201 1.0402 
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It has been observed experimentally (Shuster, 1995) that the power spectra of a large variety of physical 

systems diverge at low frequencies with a power low αf/1  (0.8<α<1.4). 

The appearance of a scaling behaviour in the power spectrum of economic time series support further, 

according to Theiler (1991), the existence of a self-organisation with many degree of freedom for these series. 

If the motion is a fractional Brownian motion (fBm) a relationship exists between the Hurst exponent and 

the scaling factor of the power low α , see Eq. (11). We have calculated α from Hurst and directly from the 

spectrum. The results are presented in Tables 6 and 7. In all the time series considered, real and surrogate, the 

values are significantly different. However, this is not conclusive since there is a certain amount of variability 

calculating the Hurst exponents as well as α that may be responsible for these differences in particular for the 

linear surrogate time series. 
 

4.1.4. Fitting Nord Pool data with stable distributions 
Stable distributions are a class of distributions that have the property of stability: if a number of independent 

and identically distributed (iid) random variables have a stable distribution, then a linear combination of these 

variables will have the same distribution, except for possibly different shift and scale parameters. Special cases 

of stable distributions include Gaussian, Cauchy and Levy distributions. They are described by four parameters 

the first two are α∈(0,2], an index of stability and β∈[−1,1], a skewness parameter. α and β determine the 

shape of the distribution. The last parameters are γ∈[0,∞) a scale parameter and δ∈(−∞,∞) a location 

parameter. 

A stable probability distribution is defined by the Fourier transform of its characteristic function ( )tϕ : 
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where ( )tϕ  is given by 

( ) ( )[ ]Φ−−= )sgn(1||exp tititt βγδϕ α      (19) 

and sgn(t) is just the sign of t and Φ is given by 

)2/tan(πα=Φ         (20) 

for all α except α=1 in which case: 

)log()/2( tπ−=Φ         (21) 

There is no general analytic expression for a stable distribution. There are, however four special cases 

which can be analytically expressed: 

a/ for α=2 the distribution becomes a Gaussian distribution with variance 22 2γσ =  and mean δ  

b/ for α=1 and β=0 the distribution reduces to a Cauchy distribution with scale parameter γ and shift 

parameter δ  

c/ for α=1/2 and β=1 the distribution reduces to a Levy distribution with scale parameter γ and shift 

parameter δ  
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d/ In the limit as γ  0 or as α  0 the distribution will approach a Dirac delta function )( δ−xδ  

The heavy tail behaviour causes the variance of stable distribution to be infinite for α<2 (if α=2 the 

distribution is Gaussian). 

Stable distributions have been proposed as a model for many types of physical and economic systems 

because many large data sets exhibit heavy tails and skewness. Anyway, while non-Gaussian stable 

distributions are heavy tailed, most heavy-tailed distributions are not stable. 

In order to analyse these series we have fitted the histogram to the first difference, of each series with a 

stable distribution (Nolan, 1999), X~S(α,β,γ,δ;A), using the program STABLE for univariate data 

(http://www.cas.american.edu/~jpnolan). The last parameter A can be 0 or 1 respectively if the characteristic 

function is continuous in all four parameters or not. We will consider the first case A=0. A typical situation in 

these time series is the existence of a high number of zero values normally in correspondence with weekends or 

holidays. To compare the results, we have eliminated from the original series the points where the exchange 

rate was unchanged, i.e. the zero value. Table 8 summarizes the fitted parameters using the maximum 

likelihood estimation (Nolan, 1997 and 1999); whereas in figs. 9-10 the fit obtained using both approaches is 

shown. The other methods implemented in STABLE, i.e. quantile/fractile method and sample characteristic 

function, gave similar results. 

 
Figure 9. Fitted density plot for the Nord Pool Norwegian Krone time series data (blue line): a/Original time series, first 

difference; b/ without zero values (23962 values). 
 
As can be observed in figs. 9 and 10, the first Nord Pool time series had a considerable amount of first 

differences equal to zero, i.e. no change between one spot price and the successive. This high value makes it 

difficult to fit a stable probability distribution (see fig. 9a). On the contrary, in the EUR Nord Pool time series 

this problem is not so evident and the stable parameters are quite similar with or without the zero values (see 

Table 8 and Fig. 10). 
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Figure 10. Fitted density plot for the Nord Pool Norwegian Euro time series data (blue line): a/Original time series, first 

difference; b/ without zero values (730 values). 
 
 

Table 8. Nord Pool data fitted parameters using STABLE (Nolan, 1999). 
 

Data set α β γ. δ 
KRN 0.412 -0.365 0.035 -0.00018 

KRN(0) 1.116 0.127 0.242 -0.0514 
EUR 1.308 0.164 0.268 -0.068 

EUR(0) 1.315 0.173 0.272 -0.069 
 
Afterwards, the surrogate time series for the Nord Pool in EUR have been compared with the original time 

series. The results are summarized in Table 9. The shuffled surrogate time series have all the same stable 

parameters as the original time series. 

 
Table 9. Parameters of stable distribution that fit Nor Pool data in EUR/kwh and its surrogates linearly correlated. 

 
Data set α β γ δ 

EUR 1.308 0.164 0.268 -0.068 
Surr01_nl 1.799 0.0397 1.16264 -0.6388E-2 
Surr02_nl 1.7831 0.0264 1.13151 -0.61447E-2 
Surr03_nl 1.6640 0.0378 1.02906 -0.0210 
Surr04_nl 1.7762 0.0036 1.01902 0.1162E-2 
Surr05_nl 1.8062 0.0205 1.11834 -0.3311e-2 
Surr06_nl 1.6059 0.0011 0.903214 -0.66719E-2 
Surr07_nl 1.7837 -0.0093 1.16422 0.30468E-2 
Surr08_nl 1.7693 -0.0553 0.998577 0.15710E-1 
Surr09_nl 1.7481 0.0135 1.18132 -0.22515E-2 
Surr10_nl 1.7621 -0.0061 1.09915 0.35807E-2 
Surr11_nl 1.7604 0.0624 1.13694 -0.27875E-1 
Surr12_nl 1.7505 0.0450 1.07224 -0.15495E-1 
Surr13_nl 1.7156 0.0161 1.05419 -0.827819E-2 
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Surr14_nl 1.7392 -0.0293 1.18483 0.67472E-2 
Surr15_nl 1.7039 0.0619 1.00392 -0.15986E-1 
Surr16_nl 1.7894 0.0155 1.10006 -0.69631E-2 
Surr17_nl 1.8059 -0.0368 1.17309 0.87207E-2 
Surr18_nl 1.7869 -0.0213 1.11810 0.60565E-2 
Surr19_nl 1.7777 0.0038 1.19410 0.75471E-2 

 
By comparing the surrogate data sets it is possible to observe that they have a probability distribution 

function (pdf) more similar to a Gaussian (α close to 2) in comparison with original data (α =1.308) and they 

have β closer to 0 which mean their pdfs have less skewness. 

4.2. Finding the time delay and embedding dimension 

Determining the time delay and the embedding dimension is considered as one of the most important steps 

in nonlinear time series modelling and prediction. A number of methods have been developed in determining 

the time delay and the minimum embedding dimension since the early beginning of nonlinear time series study. 

Here we will describe and apply several of them to the foreign exchange time series data sets. 
 

4.2.1. Time delay 
The first step in phase space reconstruction is to choose an optimum delay parameter �. Different 

prescriptions have appeared in the literature to choose � but they are all empirical in nature and do not 

necessarily provide appropriate estimates: 

- First passes through zero of the autocorrelation function: In earlier works (Mees et al., 1987) it was 

suggested to use the value of τ for which the autocorrelation function 

 ])(][)([)( snssnsC
n

−+−= ∑ ττ       (22) 

first passes through zero which is equivalent to requiring linear independence. 

The application of the zero crossing of the autocorrelation function gives quite high values for both time 

series, see Fig. 11. 

- First minimum of the Average mutual information: Fraser and Swinney (1986) suggested to use the 

average mutual information (AMI) function, I(τ), as a kind of nonlinear correlation function to determine when 

the values of s(n) and s(n+ τ) are independent enough of each other to be useful as coordinates in a time delay 

vector but not so independent as to have no connection which each other at all. For a discrete time series, I(τ) 

can be calculated as, 
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where P(s(n)) refers to individual probability and P(s(n),s(n+ τ)) is the joint probability density. Following 

the method developed by Abarbanel (1996), to determine P(s(n)) we simply project the values taken form s(n) 

versus n back onto the s(n) axis and form an histogram of the values. Once normalised, this gives us P(s(n)). 

For the join distribution of s(n) and s(n+ τ) we form the two-dimensional histogram in the same way. 
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Figure 11. Correlation f of the Nord Pool time series. 

 
 

 

 
 

Figure 12. Average Mutual information function. First minimum for NOK/MWh time series (top) occurs at τ=15, whereas 
for the EUR/MWh time series (bottom) for τ=13. 
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In general, the time lag provided by I(τ) is normally lower than the one calculated with the C(τ), 

τAMI≥ τcorrel, and provides the appropriate characteristic time scales for the motion. Even though C(τ) is the 

optimum linear choice from the point of view of predictability in a least square sense of s(n+ τ) from 

knowledge of s(n), it is not clear why it should work for nonlinear systems and it has been shown that in some 

cases it does not work at all. 
 

4.2.2. Embedding dimension 
The dimension, where a time delay reconstruction of the system phase space provides a necessary number 

of coordinates to unfold the dynamics from overlaps on itself caused by projection, is called the embedding 

dimension, dE. This is a global dimension, which can be different from the real dimension. Furthermore, this 

dimension depends on the time series measurement, and hence, if we measure two different variables of the 

system, there is no guarantee that the dE from time delay reconstruction will be the same from each of them. 

The usual method for choosing the minimum embedding dimension is to compute some invariant of the 

attractor. By increasing the embedding dimension used for the computations, one notes when the value of the 

invariant stops changing. Since these invariants are geometric properties of the dynamics, they become 

independent of d for d≥ dE, i.e. after the geometry is unfolded. 

In this work, we have used three methods: 

- Saturation of the correlation dimension: The correlation dimension is a measure of the dimension obtained 

considering correlations between points. If N is the number of points in the time serie, τ is a fixed increment of 

time and { } { }T
i

T
ii itxx 11 )( == +≡ τ  the correlation integral is defined as: 
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is the Heaviside function and ||.|| denote the Euclidean norm. The function C(ε) behaves as a power of ε for 

small ε: 
νεε ∝)(C          (26) 

the exponent ν  is called correlation dimension. 

The correlation dimension is frequently used to distinguish between chaotic and random behaviour. The 

idea behind it is to construct a function C(ε) that is the probability that two arbitrary points on the orbit are 

closer together than ε. The correlation dimension is given by log(C)/log(ε) in the limit ε→0 , and N→∞. The 

correlation dimension is defined as the slope of the curve C(ε) versus ε. C(ε) is the correlation of the data set, or 

the probability that any two points in the set are separated by a distance ε. A noninteger result for the 

correlation dimension indicates that the data is probably fractal. In VRA, C(ε) is calculated for every 

embedding dimension specified in the range and plotted against that range. For the truly random signals, the 
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correlation dimension graph will look like a 45-degree straight line, indicating that no matter how you embed 

the noise, it will evenly fill that space. Chaotic (and periodic) signals, on the other hand, have a distinct spatial 

structure, and their correlation dimension will saturate as some point, as embedding dimension is increased. 

For our two time series the saturation does not occur at least until of an embedding dimension of 20, but this 

can be due to the presence of noise in the signal. 

 

 

 
 

Figure 13. Correlation dimension for NOK/MWh time series (top), and EUR time series (bottom). 
 
- False Nearest Neighbours: The method of False Nearest Neighbours (FNN) was developed by Kennel et. 

al (1992). In this case, the condition of no self-intersection states that if the dynamics is to be reconstructed 

successfully in Rd, then all the neighbour points in Rd should be also neighbours in Rd+1. The method checks 

the neighbours in successively higher embedding dimensions until it finds only a negligible number of false 

neighbours when increasing dimension from d to d+1. This d is chosen as the embedding dimension. 

It was found by Kennel et al. (1992) that if the data set is clean from noise, the percentage of false nearest 

neighbours will drop from nearly 100% in dimension one to strictly zero when dE is reached. Further, it will 

remain zero from then on since the dynamics is unfolded. If the signal is contaminated with noise (infinite 

dimension signal) we may not see the percentage of false nearest neighbours drop to near zero in any 

dimension. In this case, depending on the signal to noise ratio the determination of dE will degrade. 

For both time series, the FNN method suggest an embedding dimension of 6, see fig 14. The increase of the 

number of FNN after a certain dE is an indication of the presence of noise in the signal. 
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Figure 14. Embedding dimension using the FNN method. a/NOK/MWh time series; b/ EUR/MWh time series. 

 
- E1 & E2 Method : The method of FNN has some subjectivity in defining that a neighbour is false since the 

values of two threshold parameters have to be defined, Kennel et. al (1992). To improve this situation, Cao 

(1997) developed a similar method, which is based on evaluating the mean value of the distance between time-

delay vectors, E1(d). However, if we look only to the quantity E1(d) we can obtain wrong results in the case of 

random signals. For time series data from a random set of numbers E1(d), in principle, will never reach a 

saturation value as d increase. But in practical computations, it is difficult to resolve whether the E1(d) is 

slowly increasing or has stopped changing if d is sufficiently large. In Fact, since available observed data 

samples are limited, it may happen that the E1(d) stop changing at some d although the time series is random. 

To solve this problem Cao (1997) suggested to consider the quantity E2(d). Let 

})1((),...,(),({)( ττ −++= disisisdyi and ),( diny  the nearest neighbour of yi(d) in the d-dimensional 

reconstructed state space, then it is possible to define: 
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Since the future values are independent of the past values, E2(d), for random data, will be equal to 1 for any 

d. However, for deterministic data, E2(d) is certainly related to d, and it cannot be a constant for all d. In other 

words, there must exist some d’s such that E2(d)≠1. The E1&E2 method depends only on the time delay, and 

the embedding dimension is calculated, as in the other methods, when the values of E1 and E2 reach saturation. 

Cao (1997) showed that the method does not strongly depend on how many points are available, provided there 

are enough and it can clearly distinguish between deterministic and stochastic. 

 
Figure 15. Embedding dimension calculation for the Nord pool time series. NOK/MWh (top), EUR/MWH (bottom). 
 
Table 10 summarises the results obtained analysing Nord Pool time series. The time delay has been 

obtained using the first minimum of the AMI, Eq. (23). The embedding dimension has been computed using 

the methods of FNN (Kennel et al., 1992) and the E1&E2 method (Cao, 1997). The results of this last method 

can be seen by looking at the value of E2 (fig 15), furthermore it can be also observed that the time series 

analysed does not behave as stochastic signals, i.e. E2≈1 for all d. Furthermore, both time series have high 

dimensionality, dE≥7. This high values are in agreement with similar analysis carried out by Cao (2002) for 

other economic time series, i.e. daily variations in the British Pound and Japanese Yen/US dollar. 

 
Table 10. Time delay, τ, and embedding dimension, dE, found for the Nord Pool data sets. 

 
Data set τ dE (FNN) dE (E1&E2) 
NOK/MWh 15 7 10 

EUR/MWh 13 6 10 
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4.3. Detecting non-stationarity 

Broadly speaking a time series is said to be stationary if there is no systematic change in mean (no trend), in 

variance, and, if strictly periodic variations have been removed. Most of the probability theory of time series is 

concerned with stationary time series, and for this reason time series analysis often requires one to turn a non-

stationary series into a stationary one so as to use this theory. However, it is also worth stressing that the 

nonstationary components, such as the trend, may sometimes be of more interest than the stationary residual. 

We only report here a relatively simple stationarity test, called space time separation plot (stp), introduced 

by Provenzale et al. (1992). The idea below is that in the presence of temporal correlations the probability that 

a given pair of state points in the reconstructed state space, {s(ti), s(ti-∆t), s(ti-2∆t),…}, has a distance smaller 

than r, i.e. ||si-sj|| < r, does not depend only on the position of the sate but also on the time that has elapsed 

between them. This dependence can be detected by plotting the number of neighbour points as a function of 

two variables, the time separation and the spatial distance. In principle, one can create for each time separation 

an accumulated histogram of spatial distances. In the case of power-law noises the only points with small 

spatial separation are dynamically near neighbours, i.e. the series is non-recurrent in phase space. In this case 

the contour curves do not saturate. In the case of stationarity, we will find saturation in the plot. 

Figures 16 show the results of the test to the analysed time series. In those graphics the separation time is 

represented in the horizontal axis whereas the base 2 logarithm of the separation in space is represented in the 

vertical axis. For small ∆t points are always near neighbours in space, as their time separation increases so does 

their separation in space, in principle (Provenzale et al. 1992). Technically we have to create, for each time 

separation ∆t an accumulate histogram of spatial distance ε. We have used the program stp of Tisean (Kantz 

and Schreiber, 1997) which returns level lines for 10%, 20%, … of the pairs with a given temporal separation 

∆t. 

As can be observe the Nord Pool time series saturate, Fig. 16a, 16c but the high frequency exchange rates 

do not (Strozzi et al., 2002), fig. 16b and 16d, which gives the indication that Nord Pool time series are more 

stationary than other financial high frequency series. The non saturation, a part from the non-stationarity, is an 

indication that the data we are analysing has significant power in the low frequency, such as 1/f noise or 

Brownian motion. In this case, all points in the data set are temporally correlated and there is no way of 

determining an attractor dimension from the sample. A similar situation arises if the data set is too short. Then 

there are no pair left after removing temporally correlated pairs. If we regard the problem from a different point 

of view, correlation times of the order of the length of the sample (nonsaturating curves) mean that the data 

does not sample the observed phenomenon sufficiently (Kantz and Schreiber, 1997). 
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Figure 16. a/ Space-time separation plot (stp) of the Nord Pool spot prices (NOK/MWh); b/ Space-time separation plot of 

Australian-US dollar foreign exchange time series; c/ Space-time separation plot of the Nord Pool spot prices (EUR/MWh); 
d/ Space-time separation plot Belgium Franc-US dollar foreign exchange time series . 

 
In Figure 17 we have plotted the space-time separation plot for several of the surrogates time series. As it is 

possible to observe, in the case of linear surrogates, the results are very similar to the ones obtained for the real 

time series. In addition, the space-time separation plots finds that the series are stationary. 

 

a/ 

c/

 

b/ 
 

d/ 
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Figure 17. Space-time separation plot (stp) of the surrogate time series. 

4.4. Testing for non-linearity 

The former tests using surrogate data sets concerning the Hurst exponent, power spectrum and the stable 

distribution give an idea of the characteristics of the original series when compared with their surrogates. 

However, we have not tested the original time series for the existence of determinism. For this we need some 

parameter that is related with low dimensional determinism in the series. In order to test the null hypothesis that 

the series is a linear Gaussian random series with a 95% significance level, we have used the surrogate data sets 

for each Nord pool spot prices time series and as parameter, we have considered the error in the nonlinear one 

step ahead prediction (Farmer and Sidorowich, 1987). For both Nord Pool time series, the null hypothesis can 

be rejected since the prediction error is found to be smaller in the original time series that that of the surrogate 

data sets. These results are in agreement with the previous findings of the space time separation plot in which 

one can see that the curves saturate which means that the system is in principle not completely stochastic. 

However, we have also carried out another test based on time reversal symmetry statistic and in this case the 

null hypothesis, i.e. that a linear Gaussian random processes, cannot be rejected since the time asymmetry of 

the data was found to be not significantly different from that of the surrogates. These inconclusive results are 

typical of financial time series (Strozzi et al., 2002). 
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4.5. Recurrence quantification analysis (RQA) 

The actual methods developed in non-linear time series analysis assume that the data series under analysis 

have reach their attractors and that there are not in a transient phase, that they are autonomous and that their 

lengths are much longer than the characteristic time of the system in question. In the case of Nord Pool spot 

prices time series these assumptions are not clearly confirmed by the preliminary analysis and it may be useful 

to have another procedure to analyse these data. 

Eckmann et al. (1987) introduced a new graphical tool, which they called a recurrence plot (RP). The 

recurrence plot is based on the computation of the distance matrix between the reconstructed points in the 

phase space, i.e. si={s(t), s(t-τ), s(t-2τ),...s(t+(dE-1)τ}, 

jiijd ss −=          (29) 

This produces an array of distances in a NxN square matrix, D, being N the number of points under study. 

Once this distance matrix is calculated, in the original paper of Eckmann et al. (1987), it was displayed by 

darkening the pixel located at specific (i,j) coordinates which corresponds to a distance value between i and j 

lower than a predetermined cutoff, i.e. a ball of radius ε centered at si. Requiring εi = εj, the plot is symmetric 

and with a darkened main diagonal correspondent to the identity line. The darkened points individuate the 

recurrences of the dynamical systems and the recurrent plot provides insight into periodic structures and 

clustering properties that are not apparent in the original time series. 
 

4.5.1. Selection of the threshold or cutoff value ε 

A crucial parameter of a recurrence plot is the threshold ε. If ε is chosen too small, there may be almost no 

recurrence points and we will not be able to learn about the recurrence structure of the underlying system. On 

the other hand, if ε is chosen too large, almost every point is a neighbour of every other point. A too large ε 

includes also points into the neighbourhood which are simple consecutive points on the trajectory. Hence, we 

have to find a compromise for the ε value. Moreover, the influence of noise can bring us to choose a larger 

threshold, because noise would distort any existing structure in the RP. At higher threshold, this structure may 

be preserved. Several “rules of thumb” for the choice of the threshold ε are present in the literature between 

them (Marwan et al., 2007): 

a/ it should not exceed 10% of the mean or the maximum phase space diameter (Koebbe and Mayer-Kress, 

1992; Zbilut and Webber, 1992) 

b/ it should be such that the recurrence point density in RP is approximately 1% (Zbilut et al., 2002) 

c/ in order to avoid problem related to noise, ε has to be chosen such that it is five time larger than the 

standard deviation of the observational noise, i.e. ε>5σ (Thiel et al., 2002) 

Nevertheless, the choice of e depends strongly on the considered system under study. 

In Fig. 20 we have plotted the RP for both Nord Pool time series. We choose the 10% of the maximum 

phase space diameter as cutoff value. Several regime shifts are evident in both time series. A regime shift can 

be identified by squares structures of points separated by empty spaces (Zaldívar et al. 2007). However, in spite 
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of the differences, it is not evident how to connect the RPs with important facts in the dynamic of the 

underlying process. For doing this we need recurrence quantification parameters provided by RQA. 

 

  
 

Figure 20 a). RP for NOK/MWh τ=15, dE=10, ε=40 (left) and for EUR/KMh τ =13, dE =10, ε=10 (right) 

 

 b/ a/
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Figure 21. RPs of linear Gaussian surrogates: a/ NOK/MWh τ=15, dE=10, ε=40; b/ EUR/KMh τ =13, dE =10, ε=10. RPs of 

shuffled surrogates: c/ NOK/MWh τ=15, dE=10, ε=40; d/ EUR/KMh τ =13, dE =10, ε=10. 
 

 
In fig 21 we have plotted the RPs for Gaussian linearly correlated and shuffled surrogate time series, 

respectively. Looking to fig. 20a and 20b, it can be observed that RPs of linear surrogate are qualitatively 

similar in the structure as those of the real time series, whereas RPs of shuffled data have no particular 

structures, see fig. 21c and 21d. RPs are then a tool for detecting correlations in the dynamics, but the question 

on how quantifying these RPs arises. This is necessary in order to distinguish, for example figures such as 20 

and 21. 
 

4.5.2. Quantification of the Recurrence Plots 
Zbilut and Webber (1992) developed a methodology called Recurrence Quantification Analysis (RQA) with 

the aim of quantifiying RP´s structures. As a result, they defined several measures of complexity to quantify the 

small scale structures in RP. These measures are based on the recurrence point density and the diagonal and 

vertical line structures of the RP. A computation of these measures in small windows (sub-matrices) of the RP 

moving along the main diagonal yields the time dependent behaviour of these variables (Weber and Zbilut, 

1994). Some studies based on RQA measures show that they are able to identify bifurcation points, especially 

chaos-order transitions (Trulla et al., 1996). The vertical structures in the RP are related to intermittency and 

laminar states: those measures quantifying the vertical structures enable to detect chaos-chaos transitions 

(Marwan et al., 2002). The measures to quantify complexity of RPs are the following: 

a/ Measures based on recurrence density 

%recurrence (RR) is the percentage of darkened pixels in recurrence plot: 
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where )(, εjiR  is one if the state of the system at time I and the one at time j have a distance less than ε  

and zero otherwise. 

It is a measure of the density of recurrence points in RP. Note that it corresponds to the definition of the 

correlation integral, Eq. (24), except that the points of the main diagonal usually are not included. 

b/ Measures based on diagonal lines 

Let P(ε,l) be the histogram of diagonal lines of length l. If we assume we have obtained the right value of ε 

then we can consider )(),( lPlP =ε . Processes with uncorrelated or weakly correlated behaviour cause none 

or very short diagonals, whereas deterministic processes cause longer diagonals. It is called %determinism 

(DET) the ratio of recurrence points that form diagonal structures (of at least length lmin) to all recurrence points 
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%determinism (DET) is then the percentage of recurrent points forming diagonal line structures. If lmin =1 

the determinism is one. For the choice of lmin we have to take into account that the histogram P(l) can become 

sparse if lmin is too large, and, thus, the reliability of DET decreases. 

Another RQA measure considers the length maxL  of the longest diagonal line found in the RP, or its 

inverse, the divergence (DIV) 
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l lPN  is the total number of diagonal lines. 

These measures are related to the exponential divergence of the phase space trajectory. The faster the 

trajectory segments diverge, the shorter are the diagonal lines and the higher is DIV. 

The measure entropy (ENTR) refers to the Shannon entropy of the probability lNlPlp /)()( =  to find a 

diagonal line of length l in RP. 
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)(ln)(        (33) 

ENTR reflects the complexity of the RP in respect of the diagonal lines. For uncorrelated noise the value of 

ENTR is rather small, indicating its low complexity. 

Trend is a measure of the paling recurrence points away from the central diagonal. It is a linear regression 

coefficient over recurrence point density of the diagonals parallel to main diagonal as a function of the time 

distance between these diagonals and the main diagonal. It provides information about non-stationarity in the 

process, especially if a drift is present in the trajectory. Trend will depend strongly on the size of the window 

and may yield ambiguous results for different window sizes. 

c/ Measures based on vertical lines 
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We can find vertical lines in presence of laminar states in intermittence regimes. Let the total number of 

vertical lines of length ν in RP is given by the histogram )(vP  and, analogous to the definition of the 

determinism, the ratio between the recurrence points forming the vertical structures and the entire set of 

recurrence points can be computed: 

∑

∑

=

== N

v

N

vv

vvP

vvP
LAM

1

)(

)(
min          (34) 

This it is called laminarity. The computation of LAM is realised for those ν that exceed a minimal length 

νmin. LAM represents the occurrence of laminar stares in the system without describing the length of these 

laminar phases. LAM will decrease if the RP consists of more single recurrence points than vertical structures. 

The average length of vertical structures is given by 

∑

∑

=

== N

vv

N

vv

vP

vvP
TT

min

min

)(

)(
         (35) 

and is called Trapping Time. TT estimates the mean time that the system will abide at a specific state or how 

long the state will be trapped. 

In contrast to the RQA measures based on diagonal lines, these measures are able to find chaos-chaos 

transitions. Since periodic dynamics the measures quantifying vertical structures are zero, chaos-order 

transition can be identified (Marwan et al., 2002). 

For a recent overview of the quantifying techniques and their applications, the reader is referred to Marwan 

et al. (2007). 
 

4.5.3. Analysing the complete time series 
In order to check if RQA measures are able to distinguish between real data and their surrogates (linear 

Gaussian processes) we calculated all of them for both. The results are summarized in Tables 11-12 for 

NOK/MWh and EUR/MWh time series, respectively.  
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Table 11. RQA measures for NOK/MWk original time series ant its surrogates linear correlated. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Trapping Time = -1 means that no vertical lines were found. 
 

Table 12. RQA measures for EUR/MWk time serie ant its surrogates linear corelated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Data set %recur %deter maxline entropy trend % laminar TrapTime 
Bpr 16.095 67.13 3545 8.593 -8.687 69.994 308.044 

Surr001 8.150 6.129 4808 6.740 2.306 1.796 123.511 
Surr002 1.926 4.521 1355 4.913 -0.142 0.000 -1 
Surr003 2.807 8.026 4808 6.028 -1.616 0.000 -1 
Surr004 30.218 36.309 4808 7.994 -3.360 35.521 214.805 
Surr005 1.735 13.216 1844 6.117 -0.983 0.055 110 
Surr006 1.007 32.018 1178 6.287 -0.752 16.980 166.134 
Surr007 4.785 13.279 2674 6.895 -0.802 7.533 153.511 
Surr008 14.122 17.880 4350 7.357 -4.479 9.293 154.815 
Surr009 5.934 13.528 3130 7.195 -2.458 6.301 159.498 
Surr010 1.193 5.900 1064 4.696 -0.677 0.347 119.500 
Surr011 4.860 51.638 4808 7.918 -1.542 52.444 266.162 
Surr012 31.899 52.675 4808 8.415 12.407 54.522 218.168 
Surr013 4.795 9.417 4808 6.880 0.524 0.724 143.393 
Surr014 5.725 9.169 4154 6.783 -2.980 1.774 144.963 
Surr015 4.972 6.340 2370 6.606 -2.341 1.720 114.988 
Surr016 18.050 23.404 4808 7.678 -4.183 12.845 161.470 
Surr017 10.846 43.188 4614 8.799 -7.222 38.298 338.899 
Surr018 4.956 8.523 4808 6.596 -2.654 3.484 141.553 
Surr019 6.323 4.462 4808 6.184 -1.989 0.375 114.208 

Data set %recur %deter maxline entropy trend % laminar TrapTime 
Beur 7.12 35.33 2094 7.658 -4.587 33.94 263.525 

Surr001 12.524 3.665 3340 6.355 -6.259 2.539 149.367 
Surr002 1.643 5.894 2238 5.270 -1.100 1.872 119.367 
Surr003 3.840 1.397 2150 4.533 -0.998 0.000 -1 
Surr004 4.377 1.105 1324 3.970 -0.286 0.000 -1.000 
Surr005 10.677 1.825 4187 5.730 -5.483 1.527 126.613 
Surr006 8.658 18.813 4826 7.538 -5.638 9.854 146.364 
Surr007 0.491 3.888 690 2.807 -0.346 0.000 -1.000 
Surr008 23.790 11.105 4826 7.509 -7.639 9.252 162.159 
Surr009 30.269 10.831 4826 7.393 -1.830 7.108 151.053 
Surr010 20.536 4.700 4826 6.845 -7.466 6.416 150.611 
Surr011 2.336 3.777 1888 5.094 -1.160 1.529 134.161 
Surr012 3.715 1.475 3517 4.059 -1.627 0.108 117.250 
Surr013 4.994 3.736 3721 5.972 -3.343 1.886 135.457 
Surr014 21.649 9.020 4826 7.162 -2.900 9.664 154.810 
Surr015 20.052 8.142 2669 7.247 -4.243 4.171 146.484 
Surr016 6.811 5.384 3998 6.574 -4.098 0.758 125.312 
Surr017 3.161 4.113 1964 5.641 -2.076 0.715 131.650 
Surr018 7.809 3.369 2429 6.204 -0.473 2.766 132.437 
Surr019 12.185 1.330 4826 5.429 1.503 0.088 125.600 
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By looking to Tables 11-12 we can observe that %recurrence, maxline, entropy, trend or Trapping Time 

parameters cannot distinguish, with a 95% of confidence, between a linear gaussian dynamic and the dynamic 

behind the financial time series. Of course this does not implies that are not useful for their quantification, but 

only that the values of the parameters are in some case higher and in other cases smaller than those of the 

original time series. On the contrary, using %determinism, %laminarity we obtain values which are always 

smaller for surrogate data in comparison with original data sets. The fact that these two parameters are able to 

distinguish between the original time series and the surrogate time series points toward the explanation that the 

original series have more diagonal and vertical lines, and therefore their state remain near or at the same place 

longer in time more often than for their surrogate linear Gaussian process and that they posses a different 

decaying of the autocorrelation function. It could be interesting to generate surrogate data using stable 

distributions and then compare the values of RQA parameters. 

If we apply RQA to shuffled surrogates, the RQA measures do not detect any structure giving for example 

%determinism, %recurrence and %laminarity equal to zero for all cases. 
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Figure 22. NOK/MWh (top) and EUR MWh (bottom) and the dates from Tables 1-3 

 

4.5.4. RQE analysis 
Let now compute RQA measures on a moving window. In this way, we obtain a time dependent profile of 

RQA measures. We would like to see if RQA measures are able to detect some events that are not clear from a 

direct inspection of the time series. For example we are interested to observe if some changes in the RQA 

parameters occur in correspondence of the entry of a new country in the Nord Pool (Table 1) or in 

correspondence with the starting of the deregulation processes (Table 2), or in correspondence with dry and wet 

years (Table 3). Figure 22 shows the two Nord Pool time series plotted with the dates or periods indicated in 

Tables 1-3, whereas in Figs. 23-24 the behaviour of RQA parameters is plotted with a moving window of one 

month shifted of one month for NOK/MWh and EUR/MWh, respectively. 



Liuc Papers n. 200, marzo 2007 
 

42 

 

 
Figure 23. Nonlinear metrics of the Nord Pool spot prices time series in NOK/MWh: Values are computed from a 720 point 

window (one week), data are shifted 720 points. RQA parameters: τ =15, dE=10, distance cutoff: max. distance between 
points/10, line definition: 100 points (~4 days). Vertical lines correspond to the following dates: 1st January 1993, 1st 

January 1996, 29th December 1997 and 1st July 1999 (see historical background). 
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Figure 24. RQA measures of EUR/MWh: Values are computed from a 720 point window (one month), shifted of 720 

points. RQA parameters: τ =13, dE=10, distance cutoff: max. distance between points/10, line definition: 100 points (~4 
days). Vertical lines correspond to the following dates: 1st October 2000, 5th October 2005 (see historical background). 
 
By looking at Figs. 23-24 we can observe a qualitative agreement between the RQA measurements: 

%recurrence, %determinism, %laminarity and trapping time, for both time series. Furthermore, most of the 

times, it is possible to observe an inflection in correspondence of the entrance of a new state in Nord Pool (red 
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lines in Figs. 23 and 24 and Table 1). These lines also sometimes coincide with the starting of deregulation 

processes in other countries (see Table 2). However, there is no clear evidence and also inflections are visible 

in other parts of the time series. 

In addition by looking at the RQA parameters (%recurrence, %determinism, %laminarity and trapping 

time) we can observe that, in correspondence of dry periods (yellow periods), the parameters tend to have 

smaller values and/or a negative trend. This is more clear in the first time series where hydroelectric power was 

more important for the Nord Pool. In these dry periods, due to the high dependence from the oil, the volatility 

of the price increases. 

It is well-known that high volatility periods are those in which it is more difficult to make forecast. Higher 

%determinism and %laminarity mean that the states of the system stay closer in time for longer periods 

forming diagonal or vertical segments in RP. Then we can assume that higher %determinism or %laminarity 

implies smaller volatility. To study the relationship with volatility, we have compared the profiles of these 

quantities with the inverse of standard deviation between 0 and 100 (see figs. 25-26). The main difference 

between %determinism and %laminarity is that, in the periods of high volatility, %laminarity reaches zero 

values which gives a more clear signal of volatility periods. 

 
Figure 25. Inverse of standard deviation and %determinism (top) and %laminarity (bottom) for NOK/MWh 
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Figure 26. Inverse of standard deviation and %determinism (top) and %laminarity (bottom) for EUR/MWh 

 

 
Figure 27. RQA measures of EUR/MWh: Values are computed from a 720 point window (one month), shifted of 720 

points. RQA parameters: �=13, dE=10, distance cutoff: max. distance between points/10, line definition: 100 points (~4 
days). Vertical lines correspond to the following dates: 1st October 2000, 5th October 2005 (see historical background). 

 
In order to extract more information from RQA measures, we have compared the mean values of 

%determinism and %laminarity with the mean values of the inverse of the standard deviation (StDev) during 

the periods between changes in weather conditions (for EUR fig 27, left, and fig. 28 left for NOK) and the 

periods between the entrance of new states in Nord Pool (fig 27 right for EUR, fig 28 right for NOK). In both 
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cases, it is possible to observe that using RQA measures the changes in the means are more evident (the steps 

higher) than using standard deviation. Then using the RQA measures it is possible to improve the detection of 

changes in the time series analyzed. 

 
Figure 28. Nonlinear metrics of the Nord Pool spot prices time series in NOK/MWh: Values are computed 
from a 720 point window (one month), data are shifted 720 points. RQA parameters: τ =15, dE=10, distance 
cutoff: max. distance between points/10, line definition: 100 points (~4 days). Vertical lines correspond to the 
following dates: 1st January 1993, 1st January 1996, 29th December 1997 and 1st July 1999 (see historical 
background). 

5. Conclusions 

Nonlinear time series analysis has been carried out for the Nord Pool time series. Preliminary analysis 

confirms already published work concerning the antipersistence, H<0.5, of these type of data sets. The power 

spectral density shows a scaling behaviour typical of financial time series. On the contrary, like in other high 

frequency time series such as exchange rates, the saturation in the space time separation plot shows that the 

time series may be considered as stationary and hence, the application of the surrogate data tests, that assumes 

two kinds of null hypothesis: stationary Gaussian linear process or no correlation at all, is adequate. 

Stable distributions have been proposed as a model for many types of physical and economic systems 

because many large data sets exhibit heavy tails and skewness. It is possible to observe a clear distinction 

between the first period time series in NOK and the second in EUR. In the first case there is a considerable 

number of zeros in the first difference of the series that create some problems in fitting the parameters for a 

stable distribution, whereas the problem does not exist in the second case. In general terms the series seems to 

have long tails and be more similar to a Levy distribution than to a Gaussian one. Also in this case, linear 

surrogate data produce different values when fitted with stable distributions being more similar to a Gaussian 

(α =1.7 instead of 1.3) and having more symmetry, with β closer to 0 than their original series that have more 

skew. 
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The application of RQA shows some critical points in the series that loosely correspond with some 

historical periods; however it is difficult to assign a one to one correspondence. Also in this case some RQA 

measures are able to distinguish between linear and shuffled surrogates time series and the original ones. We 

have also found a correspondence between %determinism and %laminarity with the inverse of the standard 

deviation, therefore, these parameters can give another method to measure volatility in time series analysis. We 

have compared the mean values of these three quantities calculated between the periods in which there were 

important changes in weather conditions or in correspondence of which there was the incorporation of new 

states into the Nord Pool. We have shown that %determinism and %laminarity detect these changes more 

clearly than standard deviation and then they provide an alternative measure of volatility. 

The future developments of this work will be to find a correlation between market prices (or some related 

variable such as volatility) and the likelihood of blackouts. In this work, candidate parameters have been 

assessed. 
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Abstract. In this work, we have applied Recurrence Quantification Analysis (RQA)
to data sets taken from the Nordic spot electricity market. Our main interest was
in trying to correlate their volatility with variables obtained from the quantifica-
tion of recurrence plots (RP). For this reason we have based our analysis on known
historical events: the evolution of the Nord Pool market and climatic factors, i.e.
dry and wet years, and we have compared several dispersion measures with RQA
measures in correspondence of these events. The analysis suggests that two RQA
measures: DET and LAM can be used as a measure of the inverse of the volatility.
The main advantage of using DET and LAM is that these measures provide also
information about the underlying dynamics. This fact is shown using shuffled and
linear Gaussian surrogates of the real time series.

1 Introduction

The complex behavior of financial time series, which linear stochastic models are not able to
account for [1], has been attributed to the fact that financial market time series are nonlinear
stochastic, chaotic or a combination of both. Even though there is no conclusive evidence of
low dimension deterministic structure, in the last few years nonlinear time series analysis has
expanded rapidly in the fields of economics and finance [2]. This is also due to the fact that
economic and financial time series seem to provide a promising area for the development, testing
and application of nonlinear techniques, and the fact that high frequency financial time series
are readily available [3]. In addition to financial market time series, energy market spot prices
have also been analyzed with several nonlinear techniques.

In [4],[5] the authors established, using Hurst R/S analysis, that the electricity prices are
anti-persistent with a Hurst exponent lower than 0.5, H ' 0.41. Also the Lyapunov exponents,
a quantity that characterizes the mean rate of separation of infinitesimally close trajectories in
a dynamical system, have been estimated in a recent study [6].

Volatility in financial markets is a dispersion measure that quantifies the degree of uncer-
tainty about the future price. It refers to the degree of unpredictable changes over time of
the price and it may be measured via the standard deviation of the returns (see Section 3).
Simonsen [7] has demonstrated that power market volatility has some features in common with
other financial markets, such as volatility clustering [8] (i.e. large changes tend to be followed
by large changes and viceversa) and fat-tailed distributions, but there are also present some
peculiarities; for example, power markets exhibit volatility levels well above other financial time
series probably due to the fact that electricity cannot be stored efficiently.

In this work, we have applied Recurrence Quantification Analysis (RQA) to data sets taken
from the Nordic spot electricity market. The relationship between RQA measures and some

a e-mail: fstrozzi@liuc.it
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Fig. 1. Spot prices in the Nordic electricity market (Nord Pool) in NOK/MWh from May 1992 until
December 1998.

dynamic features of financial time series; i.e. high frequency exchange rates, was explored in
[9], [10]. Here, our main interest was in trying to correlate the volatility with variables obtained
from the quantification of recurrence plots (RP). We have based our analysis on known histor-
ical events: the evolution of the Nord Pool market and climatic factors, i.e. dry and wet years.
The underlying hypothesis was that the increase in the number of participants in the Nord
Pool market could increase the volatility of the series and that, due to the strong dependence
of hydroelectric power on climatic variability, i.e. dry-wet years, would tend also to provoke
changes in the volatility of the time series. This work is a first step in the direction of exploring
if there exists a correlation between the volatility in electricity prices and the frequency and
intensity of blackouts. Moreover, as volatility is often used to estimate the risk associated with
a financial instrument, we were interested in finding alternative measures such as the ones ob-
tained from the application of Recurrence Quantification Analysis (RQA) [11], which allows the
quantification of the Recurrence Plots (RP) [12]. The results suggest that there are two RQA
measures (DET and LAM [13]) that are able to better detect salient events in comparison with
other dispersion measures. In particular we analyzed the relationship between RQA measures
and different dispersion measures: standard deviation of the time series, of its first differences
and of the returns (i.e. financial volatility). We found a certain degree of linear correlation
between these dispersion measures which is lost if we consider their linear gaussian surrogates
[14]. This opens up the possibility to use these measures to assess the volatility that can take
into account the non-linear dynamics that exists behind the financial data.

2 DATA PROVISION AND HISTORICAL BACKGROUND

We have analyzed hourly data from the Nord Pool system spot prices. The series is divided into
two parts. In the first part, which lasts from 4th May 1992 until 31st December 1998 and com-
prises 58,392 data points, Fig. 1, the prices are indicated in Norwegian Krone (NOK)/MWh,
whereas in the second time series, which lasts from 1st January 1999 until 26th January 2007
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Fig. 2. Spot prices in the Nordic electricity market (Nord Pool) in EUR/MWh from January 1997
until January 2007.

Table 1. Nord Pool participating countries and dates of entry.

Countries Date of entry

Norway 1/1/93
Norway and Sweden 1/1/96
Norway, Sweden and Finland 29/12/97
Norway, Sweden, Finland and W. Denmark 1/7/99
Norway, Sweden, Finland, W. & E. Denmark 1/10/00
KONTEK zone (Germany) 5/10/05

and comprises 70,752 data points (see Fig. 2), the prices are expressed in EUR/MWh.
The Nordic electricity market, known as Nord Pool was created in 1993 and it is owned by

the two national grid companies, Statnett SF in Norway (50%) and Affrverket Svensa Kraftnt
in Sweden (50%). The Nord Pool was established as a consequence of the decision in 1991 by
the Norwegian Parliament to deregulate the market for power trading. Between 1992 and 1995
only Norway contributed to the market, in 1996 a joint Norwegian-Swedish power exchange
was started-up and the power exchange was renamed Nord Pool ASA. Finland started a power
exchange market of its own in 1996; it joined Nord Pool in 1997, and on the 15th of June 1998,
Finland became an independent price area on the Nord Pool Exchange. The western part of
Denmark (Jutland and Funen) has been part of the Nordic electric power market since 1st July
1999, whereas the eastern part of Denmark entered after 1st October 2000. On 5th October 2005
the German area KONTEK was added in the Nord Pool exchange market. Table 1 summarizes
the historical evolution of the Nord Pool.

The spot market operated by Nord Pool is an exchange market where participants trade
power contracts for physical delivery the next day, and is thus referred to as a day-ahead mar-
ket. When no grid congestion exists there will be a single identical price across all the area.
However, when there is insufficient transmission capacity in a sector of the grid, grid congestion
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will arise and the market system will establish different ”price areas”. Sometimes the prices are
of the entire Nordic region, sometimes more than one price area exists [15],[16]. In this work
we will only consider the ”system price”.

The variation of the prices in the Nord pool system is well correlated with the variations in
precipitation in Norway and Sweden because of its strong dependence on hydropower genera-
tion. Usually the definition of dry and wet refers to the deviation from normal in TWh (1012
Wh). When this value is negative the correspondent period is considered dry and viceversa wet
when it is positive. Meteorological data analysis reported in [17] found that the 1996 was a
”dry” year, while 1997-2000 was a series of ”wet” years, the 2000 was not very ”wet” and the
first part of 2001 was quite ”dry” but the autumn was very rainy and 2001 started well with
a water reservoir above the normal level. During the autumn and winter season of 2002-2003
there was a sharp decline of precipitation. This was a rare event with a frequency of only one
in every 100-200 years. This event resulted in the spot prices increasing in 2003. By looking
into Figs. 1 and 2, we can observe that weather conditions have effects on the electricity prices.
However, they are not able to explain all the features of the time series. Moreover spot prices
can increase tenfold during a single hour. These spikes, which are normally quite short lived,
tend to be more severe during high price periods [5].

3 DATA ANALYSIS AND RESULTS

3.1 Volatility measures

Several measures of volatility has been used in literature [5],[18],[19], between them we consider:

V1 = SD(st) (1)

V2 = SD(st − st−1) (2)

V3 = SD((st − st−1)/st−1) (3)

where st and SD refer to the time series values and the standard deviation, respectively. To
calculate standard deviation we used the formula:

SD(st) =
1

n− 1
·
√√√√

n∑

i=1

(si − s̄)2 (4)

s̄ = 1
n ·

∑n
i=1(si) and n is the number of points considered. In V3 the argument of SD is an

approximation of ln(st/st−1) which is often used to measure financial volatility. In order to
compare these quantities with RQA measures we invert and normalize them between 0 and 100
as follows:

IVi = 1/Vi, i = 1..3 (5)

nIVi =
IVi −min(IVi)

max(IVi)−min(IVi)
· 100, i = 1..3 (6)

Since there is a considerable amount of noise in financial time series, we assume that an
increase of the dispersion measures should be correlated with a decrease of RQA measures that
account for the predictability of the underlying dynamical system.

3.2 Finding the time delay and embedding dimension

The theory of embedding is a mathematical method that allows a temporal time series of
measurements to be represented in a state space ”similar” -in a topological sense- to that
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Fig. 3. Recurrence Plot of NOK/MWh. ∆t = 15, dE = 10, distance cutoff: 40, axis units: hour.

of the underlying dynamical system we are interested in analyzing. State space reconstruc-
tion techniques were introduced in [20],[21]. In nonlinear time series analysis delay coordi-
nates are usually used to reconstruct a representation of the original state space that gen-
erated the dynamics. The state at a time t of a measured variable s(t) is given by S(t) =
s(t), s(t−∆t), s(t− 2∆t), ..., s(t− (dE − 1)∆t), whereas ∆t is the time delay between data
when reconstructing the state space, and dE is the embedding dimension or the dimension
of the space required to unfold the dynamics. Determining the time delay and the embedding
dimension is the first step in nonlinear time series modeling and prediction. The time delay,
for the Nord Pool time series, has been obtained using the first minimum of the AMI (Average
Mutual Information function, [22]) with values of 15 and 13 hours, respectively. The embedding
dimension has been computed using the E1&E2 method [23]. Both series give the same value,
dE = 10. These high values are in agreement with similar analysis carried out by Strozzi et al.
[9] for high frequency foreign exchange time series.

3.3 Quantification of the Recurrence Plots

Eckmann et al. [12] introduced a new graphical tool, which they called recurrence plot (RP).
The recurrence plot is based on the computation of the distance matrix between points in the
reconstructed state space:

dij = ‖Si − Sj‖ . (7)

This produces an array of distances in a nxn square matrix, D, n being the number of points
under study. If this distance is lower than a predetermined cutoff, r , the pixel located at specific
(i, j) coordinates is darkened. These points highlight the recurrences of the dynamical systems
and the recurrence plot provides insight into periodic structures and clustering properties that
are not apparent in the original time series. Figures 3 and 4, show the RPs for Nord Pool time
series (generated with VRA, http://www.myjavaserver.com/∼nonlinear/vra).

In order to extend the original concept and make it more quantitative, Zbilut and Webber
[24] developed a methodology called Recurrence Quantification Analysis (RQA). Several vari-
ables to quantify RPs have been defined (see for example http://homepages.luc.edu/∼cwebber,
http://tocsy.agnld.uni-postdam.de), of which:
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Fig. 4. Recurrence Plot of EUR/MWh. ∆t = 13, dE = 10, distance cutoff: 10, axis units: hour.

– RR (%recurrence): the percentage of darkened pixels in recurrence plot).
– DET (%determinism): the percentage of recurrent points forming diagonal line structures,

which can be defined following [13] as:

DET =

∑n
l=lmin

(lP (l))∑n
l=1(lP (l))

(8)

where P (l) = P (r, l) is the histogram of diagonal lines of length l, lmin is the minimum
number of points considered to have a diagonal segment and r is the distance cutoff used to
have Recurrence Plot.

– Lmax: the longest diagonal line found in the RP, which is related with the inverse of the
maximum Lyapunov exponent which measures the stability of the system in the state space.

– ENTR: the Shannon entropy that quantifies the structures in RP.
– Trend: the measure of the paling recurrence points away from the central diagonal.
– LAM (%laminarity): the percentage of points forming vertical lines, which can be defined

following [13] as:

LAM =

∑n
ν=νmin

(νP (ν))∑n
ν=1(νP (ν))

(9)

where P (ν) = P (r, ν) is the histogram of vertical lines of length ν, νmin is the minimum
number of points considered to have a vertical segment and r is the distance cutoff used to
have Recurrence Plot.

– TT (the trapping time), which estimates the mean time that the system will stay at a
specific state.

In order to understand if the information obtained from the RQA measures are related to
statistical or dynamical properties, we performed the following test.We recalculated RQA pa-
rameters on randomly shuffled data sets of, respectively, EUR/MWh and NOK/MWh. If we
use the same parameters of Figs. 3 and 4, and, in particular, for the same radius, r, the RR
becomes zero instead of 7.12 (see Table 3) and the RP is empty. If we increase the radius, we
have recurrent points but without any structure Fig. 5. Although the statistical distribution of
the data does not change if we only shuffle them, the RQA parameters do change; however, the
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Fig. 5. RP of EUR/MWh shuffled data. ∆t = 13, dE = 10, distance cutoff: 25, axis units: hour.

Table 2. RQA measures for NOK/MWh original time series ant its surrogates.

Data set RR DET Lmax ENTR Trend LAM TT

NOK 16.10 67.13 3545 8.59 -8.69 69.99 308
Surr01 8.15 6.13 4808 6.74 2.31 1.80 124
Surr02 1.93 4.52 1355 4.91 -0.14 0.0 -
Surr03 2.81 8.03 4808 6.03 -1.62 0.0 -
Surr04 30.22 36.31 4808 7.99 -3.36 35.52 215
Surr05 1.74 13.22 1844 6.12 -0.98 0.06 110
Surr06 1.01 32.02 1178 6.29 -0.75 16.98 166
Surr07 4.79 13.28 2674 6.90 -0.80 7.53 154
Surr08 14.12 17.88 4350 7.36 -4.48 9.29 155
Surr09 5.93 13.53 3130 7.20 -2.46 6.30 159
Surr10 1.19 5.90 1064 4.70 -0.68 0.35 120
Surr11 4.86 51.64 4808 7.92 -1.54 52.44 266
Surr12 31.90 52.68 4808 8.42 12.41 54.52 218
Surr13 4.80 9.42 4808 6.88 0.52 0.72 144
Surr14 5.73 9.17 4154 6.78 -2.98 1.77 145
Surr15 4.97 6.34 2370 6.61 -2.34 1.72 115
Surr16 18.05 23.40 4808 7.68 -4.18 12.85 161
Surr17 10.85 43.19 4614 8.80 -7.22 38.30 339
Surr18 4.96 8.52 4808 6.60 -2.65 3.48 142
Surr19 6.32 4.46 4808 6.18 -1.99 0.38 114

RQA measures are not able to identify the statistical distribution of the data. To check if RQA
measures were appropriate to analyze the spot prices dynamics, we have created surrogate time
series of the real data set generated by a Gaussian linear random process with the same FFT
[14]; then we have computed their RQA parameters. The results are summarized in Table 2
and Table 3 for NOK/MWh and EUR/MWh time series, respectively.

We can observe that the parameters RR, Lmax, ENTR, Trend and TT could not distin-
guish (with a 95% confidence) between a linear Gaussian dynamics and the dynamics behind
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Table 3. RQA measures for EUR/MWh original time series ant its surrogates.

Data set RR DET Lmax ENTR Trend LAM TT

EUR 7.12 35.33 2094 7.66 -4.59 33.94 264
Surr01 12.52 3.67 3340 6.36 -6.26 2.54 149
Surr02 1.64 5.89 2238 5.27 -1.10 1.87 119
Surr03 3.84 1.40 2150 4.53 -1.00 0.0 -
Surr04 4.38 1.11 1324 3.97 -0.29 0.0 -
Surr05 10.68 1.83 4187 5.73 -5.48 1.53 127
Surr06 8.66 18.81 4826 7.54 -5.64 9.85 146
Surr07 0.49 3.89 690 2.81 -0.35 0.0 -
Surr08 23.79 11.11 4826 7.51 -7.64 9.25 162
Surr09 30.27 10.83 4826 7.39 -1.83 7.11 151
Surr10 20.54 4.70 4826 6.85 -7.47 6.42 151
Surr11 2.34 3.78 1888 5.09 -1.16 1.53 134
Surr12 3.72 1.48 3517 4.06 -1.63 0.11 117
Surr13 4.99 3.74 3721 6.88 0.52 0.72 144
Surr14 21.65 9.02 4826 7.16 -2.90 9.66 155
Surr15 20.05 8.14 2669 7.25 -4.24 4.17 146
Surr16 6.81 5.38 3998 6.57 -4.10 0.76 125
Surr17 3.16 4.11 1964 5.64 -2.08 0.72 132
Surr18 7.81 3.37 2429 6.20 -0.47 2.77 132
Surr19 12.19 1.33 4826 5.43 1.50 0.09 126

the Nord pool time series. Of course, this does not imply that those parameters are not useful
for their quantification, but only that the values of the parameters in the surrogate time series
were indistinguishable from those of the original time series. On the contrary, DET and LAM
always produced values which were higher in the original data set when compared with surro-
gate data.

The fact that DET and LAM were able to distinguish between the original and the surrogate
time series can be explained by assuming that there is more structure in the original series,
and therefore the distance in state space remained closer for longer times when compared with
their surrogate linear Gaussian process. It is possible to assume that during high volatility
periods the sensitivity increases, and consequently the forecast becomes more difficult even for
short time horizon. The measures related with the percentage of determinism (DET) of the
time series will tend to decrease. Higher DET and LAM mean that the states of the system
stay closer in time for longer periods, forming diagonal or vertical segments in the RPs. Thus,
we may assume that higher DET values imply smaller volatility.

We have computed these RQA measures inside a moving window. For this analysis we used
a one month moving window shifted by one month (720 points) for both data sets (NOK/MWh
and EUR/MWh).

We were interested in observing if some changes in the RQA parameters make sense in
correspondence of the entry of a new country in Nord Pool (Table 1) or in correspondence
with dry and wet years. To study the relationship between DET and LAM with the dispersion
measures considered (Eq. 6), we have compared their profiles, as can be seen in Figs. 6 and 7,
for the meteorological conditions, where the bold lines are seasonal -3 months- averages of the
plotted quantities. It is possible to observe, for some years, a seasonal behavior with a decrease
during the middle of the year corresponding with spring and summer, with minimum values
for 1996 (dry year) for NOK/MHh series in all measures except for nIV3, Fig. 6. Similarly, for
EUR/MWh series, there is a qualitative agreement being 2001, 2003, 2005 and 2006 the years
for which lower values are found.

To analyze the effect of the entrance of a new state in the Nord Pool on DET , LAM and
on the three dispersion measures, we took the mean values of the measures between the two
successive changes of the composition of the Nord Pool. In this case looking at Figs. 8 and 9 it
seems that, as the number of contries in the Nord Pool system increases, there is a decrease of
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Fig. 6. RQA and dispersion measures for
NOK/MWh series. RQA parameters computed
from a 720 point window (one month), shifted by
one month. RQA parameters: ∆t = 15, dE = 10,
distance cutoff: 40, line definition: 100 points (≈ 4
days). In bold seasonal averaged values (three
months).
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Fig. 7. RQA and dispersion measures of
EUR/MWh time series. RQA measures are com-
puted from a 720 point window (one month),
shifted by one month. RQA parameters: ∆t = 13,
dE = 10, distance cutoff:4, line definition: 100
points (≈ 4 days). In bold seasonal averaged val-
ues(three months).

DET and LAM as well as of the inverse of the other dispersion measures, with the exception of
nIV3. Moreover it is possible to observe that by using the RQA measures, the changes in the
mean values are more evident (the steps are higher) than using the other dispersion measures.
However, it is evident that these effects could not have been discovered a priori without the
historical knowledge. In any case, this behavior suggest that volatility is influenced by external
events and that high values of volatility correspond to low values of DET and LAM.

The determination coefficient R2, which measures the degree of linear correlation between
DET and LAM and the dispersion measures given by Eq. 6, is presented in Table 4. There
is a high linear relationship between DET and LAM, with a determination coefficient R2 of
0.88 and 0.89 for NOK and EUR, respectively. The linear relationship between these values
and the inverse of the dispersion measures is lower. However the R2 values between nIV1 (the
normalized inverse of the standard deviation) and DET are 0.47 for both series. For the case of
LAM we obtain 0.45 and 0.58 for EUR/MWh and NOK/MWh, respectively. The determination
coefficient decreases to 0.25 for nIV2 and is practically zero for nIV3. Also, as seen in Figs. 6-9,
this measure of the volatility is less correlated to the others since it is defined in relative terms
(see Eq. 3).

The same treatment, as applied to the linear gaussian surrogates of Nord Pool time series,
produces a decrease of the linear correlation, see Table 5. There is a decrease in R2: 0.56 and

Table 4. Determination coefficient R2 between dispersion measures DET and LAM.

EUR/MWh NOK/MWh

LAM -DET 0.89 0.88
nIV1- DET 0.47 0.47
nIV2- DET 0.25 0.25
nIV3- DET 0.02 0.10
nIV1- LAM 0.45 0.58
nIV2- LAM 0.26 0.30
nIV3- LAM 0.02 0.12
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Fig. 8. RQA and dispersion measures of time se-
ries in NOK/MWh. RQA measures are computed
from a 720 point window (one month), data are
shifted by 720 points. RQA parameters: ∆t = 15,
dE = 10, distance cutoff: 40, line definition: 100
points (≈ 4 days). Bold lines correspond to the
mean values between two vertical lines according
to the dates given in Table 1.
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Fig. 9. RQA measures of EUR/MWh. Values are
computed from a 720 point window (one month),
shifted by 720 points. RQA parameters: ∆t = 13,
dE = 10, distance cutoff:4, line definition: 100
points (≈ 4 days). Bold lines correspond to the
mean values between two vertical lines according
to the dates given in Table 1.
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Fig. 10. RQA and dispersion measures of a
EUR/MWh surrogate time series. Same param-
eters as Fig. 7.
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Fig. 11. RQA and dispersion measures of a
EUR/MWh surrogate time series. Same param-
eters as Fig. 9.

0.67 compared with 0.89 and 0.88 between DET and LAM. The same occurs for nIV1,whereas
the correlations remain practically the same for nIV2 and nIV3.

It seems that DET and LAM quantify the volatility related to the underlying nonlinear
dynamics in these series, whereas this effect decreases when we use surrogates, in particular the
linear correlation between DET, LAM and nIV1.

In addition, when we compare the results (Figs. 10 and 11) with the historical data (Figs. 7
and 9) we can observe that DET, LAM and nIV1 show no seasonal pattern, and the continuous
decrease present in Fig. 9 has disappeared.



Will be inserted by the editor 11

Table 5. Determination coefficient R2 between dispersion measures DET and LAM. Mean values on
19 surrogate data sets.

EUR/MWh NOK/MWh

LAM -DET 0.56 0.67
nIV1- DET 0.18 0.16
nIV2- DET 0.21 0.27
nIV3- DET 0.09 0.08
nIV1- LAM 0.25 0.29
nIV2- LAM 0.21 0.32
nIV3- LAM 0.08 0.09

4 CONCLUSIONS

Nonlinear time series analysis and, in particular, Recurrence Quantification Analysis has been
carried out for the Nord Pool time series, the goal being to analyze and characterize them using
RQA measures. In order to assess the results, we have used historical information in our analy-
sis. Particularly, we were interested in studying the reasons for the high volatility found in these
series [7] and in finding RQA measures that could provide additional results to complement
standard dispersion measures (see Eqs. 1- 3).

As a first step, we have compared the RQA measures of the original time series with two
types of surrogate series: shuffled and linear Gaussian with the same FFT. We have observed
that RQA measures do not characterize the probability distribution of the data, because the
shuffled and the real data have the same mean and variance, but different values of RQA
measures. In addition, we have found that two RQA measures: DET and LAM are able to
distinguish between real and linear Gaussian surrogate with 95% of confidence. For this reason
and because of the hypothesis that high volatility can imply small DET and LAM, we have
compared them with the inverse of the normalized dispersion measures given by Eq. 6 on a
one month moving window translated of one month. We have found that these measures are
correlated with the inverse of dispersion measures that are used to evaluate the volatility of
financial time series, see Table 4. We have found a qualitative agreement (see Fig. 6 and Fig.
7) from the point of view of high and low values corresponding to wet and dry periods and
a general decrease of the measures with the entrance of new countries in the Nord Pool (Fig.
8 and Fig. 9). The linear correlation between these measures decreases for the linear gaussian
surrogates (see Table 5)as well as the agreement with historical events. We have observed that
DET and LAM provide an alternative measure of dispersion of a financial time series that take
into account the underlying dynamics. To see if the RQA measures have some advantages in
comparison with the other dispersion measures (Eq. 6), we have observed that DET and LAM
show more pronounced jumps between the periods analyzed. This behavior is lost when we
apply the same treatment to surrogate data sets.

In future work we will investigate the correlation between market prices (or some related
variable such as volatility, DET, LAM) and the likelihood of blackouts.
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1. Introduction

The complex behaviour of financial time series has been the object of a considerable amount of studies [1,2]. It has
been demonstrated that linear stochastic models are not able to capture properly this complexity and therefore it has
been attributed to the fact that financial markets are nonlinear stochastic, chaotic or a combination of both. Specifically,
in the last decades there has been a considerable amount of discussion about the characterisation of financial time series
using the theory of Brownianmotion [3,4], fractional Brownianmotion [5], nonlinearity [6], chaos and fractals [7–9], scaling
behaviour [10,11], and self organised criticality [12,13]. Most of the tests developed in the area of economic theory provide
evidence of nonlinear dynamics, which may be deterministic or not deterministic. There is no convincing evidence of
deterministic low-dimensionality in price series [14,15], and the claims of low-dimensional chaos have never been well-
justified [16,17,11]. Nevertheless, in the last few years nonlinear time series analysis has expanded rapidly in the fields of
Economics and Finance. This is also due to the fact that economic and financial time series seem to provide a promising area
for the development, testing and application of nonlinear techniques [18] and the fact that high frequency financial time
series are readily available.

Among these time series, energy spot prices have been analysed with several nonlinear techniques. Weron and
Przybylowicz [19] studied the electricity prices using Hurst R/S analysis and showed anti-persistent behaviour with a Hurst
exponent lower than 1/2. Using another technique, the average wavelet coefficient method [20], a Hurst exponent with
valueH = 0.41 has been obtainedwhich is in agreementwith other energy spot price time series. The question ofmodelling
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electricity spot prices has also been addressed by several researchers. Because of the high volatility in Nord Pool electricity
prices, Byström [21] applied extreme value theory to investigate the tails of the price change distribution and then used the
peaks-over-threshold method to analyse the data that exceed the threshold. Perelló et al. [22] proposed a GARCHmodel for
the spot price. Weron et al. [23] fitted a jump diffusion and regime switching model to Nord Pool spot prices. Vehviläinen
and Pyykkönen [24] developed a stochastic factor based approach to mid-termmodelling of spot prices taking into account
climate data, hydro-balance, base load supply and the underlying mechanisms in spot price generation. The model was able
to provide simulated values for the fundamental data, demand and supply information, and pricing strategies.

Here we are mainly concerned with quantifying long range correlations in energy spot price market data in terms of
Hurst exponents. Such a concept has been widely used for the analysis of economic time series at the level of different
quantities. For instance, Simonsen [25] analyses the volatility of the Elspot electricity market. Volatility clustering is
observed, and relations between electricity markets and traditional financial markets are described. Main differences to
traditional financialmarkets are a general high level of volatility and apossible dependence of the volatility on the price itself.
Reference [26] contains a brief discussion on the application of standard financial tools to electricity markets. In particular,
it appears that the price for electricity is more volatile compared to other commodities because electricity cannot be stored
in an efficient way. The Spanish electricity market is analysed in Ref. [27], using multifractal detrended fluctuation analysis.
The Hurst exponent is estimated to H = 0.16±0.01. Ref. [28] analyses different energy prices, using the detrendedmoving
average technique. In particular, crude oil, natural gas, heating oil, unleaded gasoline, and propane gas are considered. Focus
is on the decay process of shocks in the return process.

We investigate in detail correlation properties of the Nord Pool electricity market. Some basic features about the time
series are reviewed in Section 2. In addition, we address the question whether such data can be described as a stationary
process, at least on the time scales covered by the data set. To keep the presentation self-contained, we recall in Section 3
some basic facts about the Hurst exponent and algorithms for the estimation of such a quantity. We then compare in
Section 4 results obtained by these different algorithms and evaluate in more detail fluctuation properties related with
such exponents. We check, in particular, if surrogate time series with the same power spectrum but originated by a linear
Gaussian processmay have the sameHurst exponent. Some comments on large fluctuations are contained in the conclusion,
Section 5.

2. Data set and time series analysis

The Nordic electricity market, known as Nord Pool (http://www.nordpool.no) was created in 1993 and is owned by the
two national grid companies, Statnett SF in Norway (50%) and Affärverket Svensa Kraftnät in Sweden (50%). The market
was established as a consequence of the decision in 1991 by the Norwegian parliament to deregulate the market for power
trading. Therefore, between 1992 and 1995 only Norway contributed to the market, in 1996 a joint Norwegian-Swedish
power exchange was started-up and the power exchange was renamed Nord Pool ASA. Finland started a power exchange
market of its own, EL-EX, in 1996 and joinedNord Pool in 1997. Beginning of 15th June 1998, Finland became an independent
price area on the Nord Pool Exchange. The western part of Denmark (Jutland and Funen) has been part of the Nordic electric
power market since 1 July 1999, whereas the eastern part of Denmark entered after 1st October 2000. On 5th October 2005
also the German area KONTEK was added in the Nord Pool exchange market.

The spot market operated by Nord Pool is an exchange market where participants trade power contracts for physical
delivery the next day. Thus, it is referred to as a day-ahead market. The spot market is based on an auction with bids for
purchase and sale of power contracts of one hour duration covering the 24 h of the following day. At the deadline for the
collection of all buy and sell orders the information is gathered into aggregate supply and demand curves for each power-
delivery hour. From these supply and demand curves the equilibrium spot prices – referred to as the system prices – are
calculated.

We have analysed hourly data from the Nord Pool system spot prices. The series is divided into two parts. The first part,
from 4th May 1992 to 31st December 1998, comprises 58,392 data points. The prices are indicated in Norwegian Krone
(NOK)/MWh, whereas the second part of time series, from 1st January 1999 to 26th January 2007, comprises 70,752 data
points with prices being expressed in EUR/MWh. We have considered the time series s(t) as well as the corresponding
returns over the time horizon ∆, defined as

r∆(t) = ln(s(t)/s(t − ∆)). (1)

Fig. 1 shows the hourly returns for the two parts of the time series considered. For both parts we have also computed
the distribution function, using the program STABLE for univariate data [29]. The result resembles in each case a stable
distribution S(α, β, γ , δ) where the fit yields parameter values α = 1.116, β = 0.127, γ = 0.242, δ = −0.05 for the first
part of the time series and α = 1.315, β = 0.173, γ = 0.272, δ = −0.07 for the second part. Thus the observed distribution
resembles a Cauchy distribution (α = 1, β = 0) and differs considerably from a Gaussian (α = 2).

Stationarity, that means broadly speaking that long time averages like mean values, variances, distribution functions, or
correlation functions do not depend on the initial time, is a property normally required for a statistical analysis. There are
prominent examples in physics, like disordered systems or glasses, which show failure of stationary behaviour because of
intrinsic properties of the dynamics (cf. e.g. Ref. [30] for s simple dynamical model of ageing). Furthermore, economic time
series normally depend on external factors and may suffer from pronounced non-stationary behaviour [31]. It is also worth

http://www.nordpool.no
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Fig. 1. Left: Hourly logarithmic return, Eq. (1), for the spot prices in the Nordic electricity market (Nord Pool) fromMay 1992 until December 1998. Right:
Hourly logarithmic return for the spot prices from January 1999 until January 2007.

Fig. 2. Top: Space-time separation plot of the Nord Pool spot prices (NOK/MWh). Bottom: Space-time separation plot of the Nord Pool spot prices
(EUR/MWh).

stressing that the non-stationary components, such as the trend, may sometimes be of more interest than the stationary
residual. While it is almost impossible to test for stationary behaviour in a rigorous way, we can still check whether on time
scales of interest our data set behaves essentially like a stationary process. We here report on a relatively simple stationarity
test, called space time separation plot [32]. For this purpose one evaluates the probability

P(r, 1t) = Prob(‖x(t + 1t) − x(t)‖ < r) (2)

that phase space points, separated in time by an interval 1t , have distance less than r . If the process is stationary and
if 1t exceeds the correlation time then such a quantity becomes independent of the time lag 1t and coincides with
the correlation integral which is frequently used for estimating fractal properties of chaotic attractors. Since phase space
coordinates are normally not accessible, one employs standard delay embedding techniques to estimate the required
probability function.We have used the program stp of the Tisean software package [33] which returns level lines of P(r, 1t)
for P = 0.05, 0.1, 0.15, . . .. Horizontal level lines in such a contour plot indicate the required independence on 1t and are
thus a signature of a stationary time series. Fig. 2 shows the results of the test of the time series under consideration. In those
graphics, the separation time1t is represented in the horizontal axiswhereas the the separation in space, r , is represented in
the vertical axis. As can be observed from Fig. 2 the contour plot obtained from the Nord Pool time series consists essentially
of horizontal lines apart from a weak 24 h periodicity. Thus P(r, 1t) is essentially independent of 1t . While financial time
series are normally not stationary, the results from space time separation plots demonstrate that electricity market data,
here the corresponding returns, are more stationary than all financial series analysed so far, i.e. foreign market exchange
data sets [31]. Furthermore, it should be noted that the changes in the market, e.g. the appearance of new participants
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(cf. beginning of this section) does not show up as a strong violation of stationary behaviour, at least on the considered time
scales. The results shown in Fig. 2 support the conjecture that the data set we are dealing with is more stationary than other
financial time series. Further evidence comes from the observation that the contour plots do not change qualitatively when
being based on shuffled surrogate data, even though the weak 24 h periodicity disappears, as expected for proper shuffled
surrogates.

3. Long range correlations

An algebraic decay of the autocorrelation function C(τ ) = 〈r1(t)r∆(t + τ)〉 ∼ |τ |
−β on large time scales or

the corresponding power law behaviour of the power spectrum S(ω) ∼ |ω|
β−1 in the low frequency domain may be

characterised in terms of the Hurst exponent H = 1 − β/2. A power law scaling of the correlation function on small time
scales can be related with the fractal dimension of the corresponding stochastic process, and both quantities, the fractal
dimension of the process and the Hurst exponent are in general independent quantities [34].

A tool for studying long-termmemory and fractality of a time series is the rescaled range or R/S analysis first introducedby
Hurst [35] in hydrology.Mandelbrot [36] argued that R/S analysis is amore powerful tool in detecting long range dependence
when compared tomore conventionalmethods like autocorrelation analysis, variance ratios, and spectral analysis. The range
R of a time series with a finite sampling rate is defined by

R(τ ) = max
t

(X(t, τ )) − min
t

(X(t, τ )), (3)

where X(t, τ ) denotes the sum of the deviation of the time series s(t) from its mean value 〈s〉τ over some time interval τ

X(t, τ ) =

t+τ∑
`=t

(s(`) − 〈s〉τ (t)) . (4)

Moreover, S(τ ) denotes the standard deviation of the time series over the time window τ . Computed for different sizes of
the time window, the rescaled range R(τ )/S(τ ) shows a power law scaling

R(τ )/S(τ ) ∼ τH (5)

with exponent H . The Hurst exponent is equal to 1/2 for Brownian motion, while H < 1/2 or H > 1/2 indicate anti-
correlated and positively correlated increments, respectively.

Improved methods to estimate the Hurst exponent have been proposed to take care of non-stationary components of
the time series. The detrended moving average (DMA) uses the scaling behaviour of the standard deviation

σDMA(τ ) =

√√√√ 1
N − τ

N∑
`=τ

(s(`) − 〈s〉τ (`))2 (6)

about a moving average 〈s〉τ (t) of a time series s(t) of length N for different sizes τ of the moving average window (cf.
Refs. [37,38]). The power law scaling of this standard deviation with the window size, σDMA(τ ) ∼ τH , yields the Hurst
exponent. The generalised multifractal detrended fluctuation analysis (MF-DFA) pursues a similar idea. Here, the standard
deviation is computed with regards to a low-order polynomial fit of the time series. One divides the time series s(t) into n
non-overlapping windows of equal size τ . For each window a polynomial fit to the time series is computed. The standard
deviation

σDFA(τ ) =

√√√√ 1
N

N∑
`=1

(
s(`) − spolyτ (`)

)2
(7)

quantifies the variation of the time series s(t) about the polynomial fit spolyτ (t) where the order m of the polynomials
determines the order of the MF-DFA. Different orders differ in their ability to eliminate trends in the time series; see
e.g. Refs. [39,40,42]. Again, the scaling of the standard deviation with the window size yields the Hurst exponent, σDFA(τ ) ∼

τH . The approach has been generalised by introducing a spectrum of Hurst exponents to take multifractal properties of the
time series into account as well.

4. Results

We now report on the calculation of the Hurst exponent for the Nordic Pool Spot data using some of the methods just
described. First, we have used the standard scaledwindowed variancemethod [41] to estimate the Hurst exponent by linear
regression of ln(R/S) versus ln(τ ). Fig. 3 shows the data evaluated separately for the two parts of the time series, currencies
in NOK and in EUR. We obtain a quite pronounced scaling range for the first part of the time series with Hurst exponent
HNOK = 0.44. For the second part the scaling behaviour is slightly less convincing and corrupted by rather large fluctuations.
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Fig. 3. Rescaled range as a function of the window size τ for spot prices (NOK: left) from May 1992 to December 1998 and (EUR: right) January 1999 till
January 2007 on a double logarithmic scale (arbitrary units). Straight lines indicate a fit to the data with slope HNOK = 0.44 and HEUR = 0.36, respectively.
The broken line indicates a data fit over a different, smaller interval with slope HEUR = 0.23.

The actual value for the slope depends on the range for the data fit. One can produce values between HEUR = 0.36 and
HEUR = 0.23. Nevertheless, as it can be seen both parts of the time series show anti-persistence, H < 1/2. This has already
been found by several researchers [19,20,22], amongst others.We generated two types of surrogate time series. The first type
is a Gaussian linear stochastic process with the same mean, variance and power spectrum of the original data, the second
is obtained by a random shuffling of the original time series. The Hurst exponent of these two types of surrogates together
with the standard deviationmeasured over 20 realisations areH(G)

NOK = 0.36±0.07,H(S)
NOK = 0.51±0.07,H(G)

EUR = 0.33±0.06,
and H(S)

EUR = 0.53 ± 0.06. The Hurst exponents of the original time series differ slightly from the linear surrogate but this
does not mean that the value of H helps us to distinguish between the original time series and their surrogates because of
the quite large errors that come with the numerical values. In fact the exponents seem to be in the range 0.4± 0.1 although
the Hurst exponent for the second part of the time series is quite low. For the shuffled surrogate time series we obtain, as
expected, Hurst exponents close to 1/2.

The difference between the two Hurst exponents HNOK and HEUR is a clear signature of non stationary behaviour most
likely to be caused by the appearance of new market participants. It is thus not surprising that these values differ. On
the other hand one should also keep in mind that the actual error bars for the exponents are likely to be substantial. For
the shuffled time series one would expect a Hurst exponent of H = 1/2 and the obtained values through surrogate data
suggest an error of the order of 0.1. Plain statistical confidence intervals, as usual, may grossly underestimate the error bars.
Furthermore, the Gaussian surrogates which preserve the power spectrum yield results for the exponents which are quite
similar for both parts of the time series. Thus, there could be a feature among the second part of the time series which is
not captured by the autocorrelation function of the data. But in view of the aforementioned error estimates, the deviations
could be a signature of the inaccuracy of the numerical values. The precise numerical value of the Hurst exponent might
only be of limited significance for the quantitative description of dynamical behaviour in real systems with finite length of
time series. However, it may allow to distinguish qualitatively between persistent and anti-persistent dynamical behaviour.
Indeed, our analysis consistently predicts a anti-persistence, i.e. H < 1/2, for the Nord Pool spot market.

As we have seen from the discussion so far, estimators which describe the decay of correlations in a real world process,
such as the Nordic electricity spot market can vary quite substantially. This may limit the accuracy and the interpretation
of those results. One way to resolve this dilemma is to characterise certain trends of the Hurst exponent as some control
parameters are changed, rather than estimating a single value. Since for the electricity spot market there are no controllable
parameters, an ‘educated’ resampling of the given time series is a sensible way to identify trends in the correlation decay. In
particular, we looked at the system price at a certain fixed hour of each day from 1 am to 12 pm. Such a resampling results in
24 different time series of smaller size. Fig. 4(a) shows the power spectrum for the system price at 1 am of each day where
no distinct peaks can be identified. On the other hand, Fig. 4(b) shows the power spectrum for 8 amwhere distinct peaks can
be seen which correspond to the weekly periodicity of the system price. Indeed, this suggests that the system price during
night hours is not affected by the 7-day interval of our industrial society, whereas there are strong correlations during daily
working hours. This behaviour is summarised in Fig. 4(c) where all 24 power spectra are shown in a three-dimensional
representation.

The Hurst exponents estimated from these power spectra are shown in Fig. 5 where different methods for the
computation of the exponents have been compared. While the different methods yield quite distinct numerical values all
methods essentially produce dips at around 9 am and 6 pm indicating that at these times the correlations in the system price
are strongly dominated by the 7-day interval imposed on themarket. Hurst exponents estimated from the asymptotic decay
of the correlation function (diamonds) are practically constant although we expect such a method to be the least reliable
one. The R/S-method (triangles) and theMF-DFA-method (circles) give practically constant results for theHurst exponents as
well, althoughwith a different value. These featuresmight be attributed to the intrinsic averaging of the respectivemethods.



6572 H. Erzgräber et al. / Physica A 387 (2008) 6567–6574

Fig. 4. Weekly periodicities in the system price along different times of the day. Panel (a): Spectrum of the system price at 1 am of each day, panel (b):
spectrum at 8 am of each day, panel (c): three-dimensional representation of the power spectrum for each hour of the day.

Hurst exponents evaluated from the power spectrum (crosses) and those obtained by the DMA-method (squares) display
clearly the daytime dependence. It should be noted that all methods give different results for the estimated Hurst exponent
when applied to a real-world time series, whereas they give identical results when applied to an ideal self-affine process.
Nevertheless, all methods show a dependence on daytime, although at different scales.

5. Conclusion

Aperfectly self-affine process can be characterised completely by a single Hurst exponent. However, such amathematical
property is rarely shared by a real world time series. It is therefore sensible to apply more sophisticated data analysis
tools, one of which is the generalised multifractal detrended fluctuation analysis, as introduced by Ref. [39]. Our analysis of
the electricity system price of the Nordic spot market has shown considerable variations of the Hurst exponent, although
the results are consistent with a mainly anti-persistent time series as shown by the traditional R/S-method applied to the
original time series and to Gaussian linear surrogates with the same mean, variance, and power spectrum. Anti-persistence
is preserved while a shuffled time series yields Hurst exponents close to 1/2.

To illustrate the large fluctuation properties of the Nord Pool data more clearly wemay compute a time-depended Hurst
exponent aswell. To this endwe resample the complete time series in overlapping timewindows of different length (1000 h,
5000 h, and 10,000 h) and use the power spectrum to estimate the Hurst exponent of the respective time window. On the
one hand this allows us to estimate the fluctuations of the Hurst exponent on different time scales. On the other hand this
gives an estimation for the accuracy of the Hurst exponent when only a finite number of data points is available. Fig. 6
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Fig. 5. Evolution of the Hurst exponent during the day estimated from the different spectra obtained from the time series and from the autocorrelation
function. Crosses (+): power law scaling of the power spectrum, diamonds (♦): evaluation of the decay of the correlation function, triangles (M): R/S
method, squares (�): DMA, and circles (©): MF-DFA with first-order interpolation of the time series.

Fig. 6. Time fluctuations of the Hurst exponent for different sizes of a moving window obtained from the decay in the power spectrum. Window sizes are
(a) 1000 h, (b) 5000 h, and (c) 10,000 h.

shows the results for the system price. Large fluctuations of the Hurst exponent can be seen when computed fromwindows
of size 1000 h. Fluctuations become smaller as the length of the timewindow increases; however, even for timewindows of
10,000 h fluctuations are still substantial. This indicates that the actual value of H may vary strongly, depending on the time
for which it is estimated. Only time windows of more than 100,000 h give a practically constant Hurst exponent similar to
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the value obtained in Section 3. In other words, for the estimation of the Hurst exponent or any other quantitative measure
of the correlation decay the finite length of the time series may have important consequence on the outcome.

Some of the fluctuations of the Hurst exponents encountered in our analysis reflect rather obvious changes in themarket.
For instance, the daily variations described in Section 4 are a feature which could be detected as well by a straightforward
correlation analysis. Thus, such variations are a signature of an incomplete suppression of non-stationary trends of the time
series rather than a true modulation of the anti-persistence. However, such variations indicate that the error bars for the
Hurst analysis are quite substantial and may amount up to 20% of the numerical value. In this context it is quite remarkable
that the rescaled range method yields almost constant values so that such a straightforward approach could be conjectured
to produce more accurate values than some of the more sophisticated techniques. However, one should bear in mind that a
single exponent is not likely to capture the whole complexity of a real world dynamical process.
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Analisi della correlazione tra il prezzo dell’energia ed i disturbi della rete elettrica 
della regione nordica. 
 

Sommario 
La regione nordica considerata in questo lavoro comprende Danimarca, Finlandia, Norvegia, 
Svezia.  La finestra temporale dei dati va da gennaio 2000 a dicembre 2006. In questo lavoro 
viene analizzata la correlazione tra il prezzo dell’energia, i disturbi nella rete elettrica ed i 
consumi totali. Sono stati considerati i prezzi dell’energia ottenuti da medie mensili di dati ad 
alta frequenza e confrontati con il numero mensile di disturbi e di consumi totali nello stesso 
periodo di tempo.  Il trattamento preliminare dei dati include l’eliminazione dei trend lineari e 
delle componenti cicliche. Dalle serie dei prezzi è stata ricavata la loro volatilità, e, similmente, 
la volatilità dei disturbi e dei consumi totali. Le domande a cui si vuole rispondere sono le 
seguenti. Il prezzo dell’energia è correlato al numero dei disturbi in modo da poter usare una 
serie temporale per anticipare l’andamento dell’altra e prevenire eventi avversi? Nel caso in cui 
la correlazione non sia evidente su tutto l’intervallo di tempo considerato, si possono identificare 
traslazioni o finestre temporali in cui la correlazione  aumenti ed in modo che gli estremi di tali 
finestre corrispondano ad eventi documentati? 
L’analisi dei dati viene fatta dapprima misurando la correlazione lineare e la relativa 
significatività applicando il t-test, successivamente calcolando la funzione di correlazione per 
vedere se, traslando una serie rispetto all’altra, la correlazione possa aumentare. Infine è stata 
applicata la Cross Recurrence Analysis (CRP) per evidenziare possibili finestre di correlazione 
lineare. La conclusione principale del lavoro è che esiste una correlazione tra la volatilità dei 
prezzi dell’energia e quella dei disturbi ed in particolare l’aumento della prima è seguita da un 
aumento della seconda. L’analisi CRP fornisce risultati molto interessanti individuando finestre 
di correlazione corrispondente ad eventi rilevanti noti, tuttavia questi risultati non sono sempre 
significativi dal punto di vista statistico e per confermali servirebbe una quantità di dati 
maggiore di quelli disponibili per questo lavoro. 
 

Correlation analysis between faults in the electricity grid and spot prices in the 
Nordic region. 
 

Summary 
In this work we have analyzed possible correlations between electricity prices and disturbances 
using the data of the Nordic electricity market. We have used the monthly spot prices, 
disturbances and consumption from the beginning of January 2000 until the end of December 
2006 in the Nordic region, i.e. Denmark, Finland, Norway and Sweden. The preliminary 
treatment of the data include the elimination of the trends applying the difference operator and 
subtracting the regression line. In addition, we have considered the price volatility and similarly 
the volatility of disturbances and of total consumption. The questions we were interested in 
addressing were the following: Are the monthly spot prices correlated with disturbances? Can 
we increase the correlation by shifting the time series and can we use the evolution of one time 
series to anticipate the behaviour of the other and/or to prevent adverse events? Can we detect 
windows of correlation and find a correspondence of the starting and ending point with some 
know events? The main conclusion of this work is that a correlation between disturbances and 
prices exists. Using the Cross Correlation function we have found a strong correlation between 
the volatility of disturbances and detrended prices, but only on windows of six or twelve 
months. To analyse the information on a shorter period we have applied Cross Recurrence Plot 
(CRP) analysis and we have shown that the advent of external events are able to change the 
correlation properties of the time series, in this case the volatility of disturbances and of prices. 
However, CRP analysis would need more data points that the available at the moment. To 
improve the results it would be necessary to repeat the analysis using at least daily data of 
disturbances and consumption. 



 3 

Correlation analysis between faults in the 
electricity grid and spot prices in the Nordic 
region 
 

Fernanda Strozzi  and José Manuel Zaldívar Comenges* 

Cattaneo University-LIUC, * European Commission IHCP-JRC  Ispra (VA) Italy 
 
 

CONTENTS 

1. INTRODUCTION 

2. DATA PROVISION AND TREATMENT 

2.1 Data Provision 

2.1.1. Disturbances and Total Consumption 

2.1.2. Electricity Spot Prices 

2.2 Data treatment 

2.2.1. Data trend and seasonality 

2.2.2. Data first differences 

2.2.3. Data volatilities 

2.2.4. Time windows and shifts 

3. TIME SERIES ANALYSIS 

3.1. Correlation matrix 

3.2. Principal component analysis 

3.3. Cross Correlation Function 

3.4. Cross Recurrence Plot 

4. CONCLUSIONS 

REFERENCES 
APPENDIX 1: Correlation matrices and t-test 
APPENDIX 2: Principal Component Analysis (PCA) 



 4 

1. Introduction 

The electricity market deregulation has caused stress in the market and in the electricity grids. In 

fact, the competition in the electricity market, together with its volatility, stressed the electricity 

grids with the variation of the flow in the physical network. The analysis of possible correlations 

between prices and disturbances is the goal of Task 5.3 of the MANMADE project and the 

subject of this report. 

The correlations, once detected, can help in the prevention of the disturbances acting on the 

electricity price or, at least, in the management of the contingency. The forecasting of the 

disturbances will be the goal of another Task of the project. 

There are a considerable number of studies in open literature on the properties of the electricity 

prices such as the high volatility (Simonsen, 2005, Strozzi et al, 2008), their long range 

correlation (Weron and Przybyłowicz, 2000; Simonsen, 2003; Bask et al. 2007).  Erzgräber et 

al. 2008 checked the long range correlation using different methods to calculate Hurst exponent. 

Volatility measurement based on Recurrent Quantification Analysis were introduced by Strozzi 

et al. 2008, but, as far as we know, the relationship between the prices and grid disturbances has 

never been analysed in detail. Nevertheless it has been previously recognized that there should 

exist a relationship (Zhao, 2007). 

In this work we have analysed possible correlations between electricity prices and disturbances 

using the data of the Nordic electricity market, which are publicly available. We have used the 

monthly spot prices, disturbances and consumption from the beginning of January 2000 until the 

end of December 2006 in the Nordic region, i.e. Denmark, Finland, Norway and Sweden. The 

preliminary treatment of the data include the elimination of the trends applying the difference 

operator and subtracting the regression line. In addition, we have considered the price volatility 

and similarly the volatility of disturbances and of total consumption. Starting from the initial 

three time series of prices, disturbances and consumption, we have obtained in this way a set of 

twelve time series. The questions we were interested in addressing were the following: 

- Are the monthly spot prices, or one of its related time series, correlated with 

disturbances, or one of its related time series, on some time windows and with some 

shift? 

- Do the twelve time series contain new information with respect to the three original 

ones? 

- Can we increase the correlation by shifting the time series and can we use the evolution 

of one time series to anticipate the behaviour of the other and/or to prevent adverse 

events? 
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- Since some external events could change existing correlations or create new ones, can 

we detect windows of correlation and find a correspondence of the starting and ending 

point with some historical know events? 

 

To answer the above mentioned questions we have proposed the following methodology. In 

Section 2 we have described the preliminary data treatment to generate the twelve time series. 

As it is well know, the correlation may change if we observe it on different data windows. For 

this reason, we have grouped the twelve time series considering their mean (or the standard 

deviation in the case of the volatilities) on different time windows overlapped or not. In Section 

3 we have studied the correlation matrices of the twelve time series. The main correlations 

between prices and disturbances in correspondence of some time windows are underlined. The 

analysis of the correlation matrices becomes deeper when we calculate their eigenvectors i.e. the 

principal components (Jolliffe, 1996) that allow identifying how many degrees of freedom, i.e. 

independent variables, may have a possible model of the twelve time series. After, we have 

checked if we can increase the correlation, shifting one time series in respect to the other, i.e. we 

have calculated the Cross Correlation Function (CCF), the correlation in respect to a shift 

(Orfanidis, 1996). As Marwan et al. (2007) pointed out, the concept of CCF can be extended 

using Cross Recurrence Plot (CRP), which is a tool that, by measuring the recurrence of two 

time series can calculate the Line Of Synchronization (LOS), and detect if, even a portion of the 

two time series, is linearly correlated with a portion of the other and which translation is 

necessary. Finally, in Section 4 the main results and the conclusions are presented. 
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2. Data provision and treatment 

2.1 Data Provision 

The data sets considered are related with the Electricity grid and market in the Nordic region 

(see Fig. 1) to detect possible correlations between disturbances and electricity prices. The data 

sets are monthly disturbances, the monthly total consumption and the monthly Electricity price 

in Denmark, Finland, Norway and Sweden from January 2000 and December 2006. All the data 

are public. The disturbances and Total Consumption are available on Nordic statistics of 

electricity faults in the Nordel web page: 

http://www.nordel.org/content/Default.asp?PageID=214. The Electricity spot prices are 

available on the Nord Pool (Nordic Power Exchange) web page: 

http://www.nordpool.com/nordpool/financial/index.html. 

 
Figure 1. Transmission grid in Nordic countries (http://www.nordel.org). 
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Nordel is the collaboration organisation of the Transmission System Operators (TSOs) of 

Denmark, Finland, Iceland, Norway and Sweden. The core duty of the TSOs includes 

(http://www.nordel.org): 

• Ensuring the operational security of the power system. 

• Maintaining the instantaneous balance between supply and demand. 

• Ensuring and maintaining the short-term and long-term adequacy of the transmission 

system. 

• Enhancing the efficient functioning of the electricity market. 

Nordel's objectives are (http://www.nordel.org): 

• Development of an adequate and robust transmission system aiming at few large price 

areas. 

• Seamless cooperation in the management of the daily system operations to maintain the 

security of supply and to use the resources efficiently across the borders. 

• Efficient functioning of the North-West European electricity market with the aim to 

create larger and more liquid markets and to improve transparency of the TSO operations  

• establishment of a benchmark for European transparency of the TSO information.  

The market participants can benefit from a common Nordic wholesale electricity market 

consisting of a day-ahead market, intra-day market and regulating power market. In these 

markets power can be traded 24 hours a day throughout the year. 

Nordel's co-operation in market facilitation aims to create and prepare for an efficient Nordic 

wholesale electricity market by balance settlement, congestion management, market coupling 

and monitoring  

The main risk factors in the Nordic power and energy balances are (http://www.nordel.org): 

• temperature  

• availability of the Nordic power plants  

• precipitation  

• transmission capacities  

The ownership of Nord Pool, the Nordic Power Exchange, is shared by the Nordic transmission 

system operators (TSOs) and Nord Pool ASA. Nord Pool ASA - The Nordic Power Exchange - 

is the world's only multinational exchange for trading electric power. The Nord Pool Group is 

headquartered in Oslo, Norway with offices in Sweden, Finland, Denmark, the Netherlands and 

Germany. The vision of a truly pan-Nordic power exchange was realised when Eastern 

Denmark was fully integrated into the Nordic market 1st October 2000, and all the Nordic 

nations operate in a joint market. Western Denmark was integrated into the Nordic Power in 1st 
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July 1999. Sweden and Norway became a single power exchange area in 1996. Finland joined 

the Nordic Power Exchange area in 1998. 

Electric production differs considerably among the Nordic countries. In Norway, nearly all 

electricity is generated from hydropower. Sweden and Finland use a combination of 

hydropower, nuclear power, and conventional thermal power. Hydropower stations are located 

mainly in northern areas, whereas thermal power prevails in the south. Denmark relies mainly 

on conventional thermal power, but wind power is providing an increasing part of the demand 

for energy.  

The power exchange Nord Pool Spot, organizes the physical trade of electricity, the day-ahead 

market Elspot in the Nordic countries and KONTEK in Germany (the TSO area of Vattenfall 

Europe Transmission GmbH). Nord Pool Spot is a part of the Nord Pool Group and is owned 

20% by Nord Pool ASA and the Nordic Transmission System Operators: Statnett SF, Svenska 

Kraftnät, Fingrid Oyj and Energinet.dk own 20 % each. 

Nord Pool Spot provides a market place to producers, distributors, industrial companies, energy 

companies, trading representatives, large consumers and TSOs on which they can buy or sell 

physical power.  

 
Figure 2. a) Number of disturbances in Denmark(*), Finland(..), Norway(.-) and Sweden(-). b) 
Total number of disturbances in Denmark Finland Norway and Sweden. 
 

2.1.1. Disturbances and Total Consumption 

A disturbance may consist of a single fault but it can also contain many faults, consisting for 

example of an initial fault followed by some secondary faults. A disturbance is defined in 



 9 

Nordel net reports (http://www.nordel.org) by an “outage, forced or unintended disconnection or 

failed reconnection as a result of faults in the power grid”. 

In Figure 2 the number of grid disturbances from the beginning of 2000 until the end of 2006, 

according to months are represented. The grid considered is the 100-400kV network (Fig. 1). 

For all the countries the number of disturbances is usually greatest during summer period. This 

is caused by lightning. Apart from lightening, the other causes of grid disturbances are other 

natural phenomena, operation, maintenance and faults in technical equipment. 

In Figure 3 the monthly Total Consumption (TC) in Nordic region except Iceland between 

January 2000 until December 2006 is represented.  

 
Figure 3. a) Total Consumption of Denmark(*), Finland(:), Norway(.-) and Sweden(-). b)Total 
Consumption in Nordel States exept Iceland. 

We did not consider the disturbances and Total consumption of Iceland because it is not a 

member of Nord Pool and we were interested in analyzing the correlation between prices and 

disturbances. 

2.1.2. Electricity Spot Prices 

In Figure 4 the Electricity spot prices of Nordic Region (Nord Pool countries) considered are 

plotted. They are hourly data from the Nord Pool system spot prices. The series lasts from 1st 

January 1999 until 26th January 2007 and comprises 70,752 data points (Figure 4), the prices are 

expressed in EUR/MWh. 



 10 

 
Figure 4. Spot prices in the Nordic electricity market (Nord Pool) from January 1997 to January 

2007. 
 

In Figure 4 the system price is represented. The system price is also denoted "the unconstrained 

market clearing price", because it is the price that balances sale and purchase in the exchange 

area while not considering any transmission constraints.  

In Table 1 it is possible to observe the evolution of the composition of Nord Pool during these 

years. 

 

Table 1. Nord Pool participating countries and dates of entry. 

Countries Date of entry of new country 
(dd/mm/yy) 

Norway 1/1/93 
Norway and Sweden 1/1/96 
Norway, Sweden and Finland  29/12/97 
Norway, Sweden, Finland  
and western Denmark  

1/7/99 

Norway, Sweden, Finland, 
 western and eastern Denmark  

1/10/00 

KONTEK (Germany) 5/10/05 
 

As already mentioned, to have a comparable data set, we have excluded Iceland from the 

disturbance and total consumption data. In addition, to be consistent with the data frequency of 

the other time series – disturbances and total consumption-, we will consider only monthly mean 

spot prices, see Figure 5.  
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Figure 5. Monthly mean spot prices obtained from Fig. 4. 

 

2.2. Data treatment 

2.2. 1. Data trend and seasonality 

We have treated the data (monthly mean Spot Price, Total Consumption and Disturbances) 

subtracting the linear trend and the seasonality. The trend is calculated using the linear 

regression line and the seasonality is removed subtracting the mean value of the given time 

series on the correspondent month of every year. In Figure 6 the trends and the seasonality 

subtracted are represented and, in Figure 7, the resulting time series are plotted. 

 
Figure 6. Subtracted trends and seasonality. 
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Figure 7. Detrended data sets. 

 
2.2.2. Data first differences 

The difference operator is often applied to eliminate the trend. In Figure 8 we have represented 

the first differences of the monthly mean Spot prices, Total Consumption and Disturbances. 
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Figure 8. First differences time series. 

 
2.2.3. Data Volatilities 

Prices volatility in the Nordic electricity marked, using the same data, it was analysed by Strozzi 

et al., 2008. Volatility can be calculated using standard deviation SD, defined as 
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Where ∆t is 1 month and the window on which we will calculate the Standard Deviation will 

change from 1 month to 12 months. In the case of 1 month window we cannot calculate standard 

deviation because we have only one point then in this case we will consider simply: 
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which are linear approximations respectively of: ln(S(t)/S(t-∆t)), ln(D(t)/D(t-∆t)) and ln(T(t)/T(t-

∆t)) i.e. the logarithm first differences. 

In Figure 9 the three volatilities are represented on a window (w) of 2 months translated by a 

shift (sh) of 1 month. 

 
Figure 9. Volatilities of the data sets considered (∆t=1 month), w=2 months, sh=1 month. 
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The twelve time series considered in the rest of this work will be labelled in according with 

Table 2.  

 
 
Table 2. Notation of the twelve time series analyzed. Diff= first differences 

Label Definition Label Definition Label Definition Label Definition 

S Mean monthly 
spot prices 

Sdt S detrended Sfd S first differences VS w=1 diff(ln(S)) 
w>1 Volatility of S  

D Monthly 
disturbancies 

Ddt  D detrended Dfd D first 
differences 

VD w=1 diff(ln(D)) 
w>1 Volatility of D 

T Monthly Total 
Consumption 

Tdt T detrended Tfd T first differences VT w=1 diff(ln(T)) 
w>1 Volatility of T 

 

2.2.4. Time windows and shifts 

We will analyse possible correlations between mean Spot prices, Disturbances and Total 

consumptions considering real data, de-trended data, first differences and volatilities of the three 

time series. These correlations will be checked for different time windows and for different time 

shifts as it is presented in Table 3. The reason for this choice is based on the natural periodicity 

inside one year (seasonality = 3 months, semester periodicity=6 months and the annual = 12 

months). The only exception is the window of two months. This choice is explained by the need 

to have the maximum number of points in order to apply Cross Recurrence Plot, in fact 2 is the 

minimum window to calculate standard deviation. (SD) 

 

Table 3. Windows and shifts considered in this work. 

w 1 3 6 12 2 3 6 12 

sh 1 3 6 12 1 1 1 1 
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3. Time Series Analysis 

First, we have studied the linear correlation coefficients i.e. the entries of the correlation matrix 

together  with its eigenvectors (PCA). Then we have checked if these linear correlation 

coefficients could increase by shifting one series with respect to the other measuring the Cross 

Correlation Function (CCF). Finally, we have applied the Cross Recurrence Plot (CRP) analysis, 

which provides a tool: Line Of Synchronization (LOS) that allows to identify time windows in 

which two time series are linearly correlated and it represents an extension of the linear Cross 

Correlation Function. 

3.1. Correlation matrix 

The correlation coefficient matrix represents the normalized measure of the strength of linear 

relationship between variables. The correlation coefficient R  of two variables X and Y is given 

by: 

)()(
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),(

YVARXVAR

YXCOV
YXR =  (7) 

where the COV(X,Y) is the covariance matrix, i.e. 
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where X  and Y  are the mean of the two variables and n in the components number. 

The correlation coefficients range from -1 to 1, where values close to 1 suggest that there is a 

positive linear relationship between the data columns, values close to -1 suggest that one column 

of data has a negative linear relationship to another column of data (anticorrelation).Values 

close or equal to 0 suggest there is no linear relationship between the data columns. 

We have applied the MATLAB® function corrcoef that produces the matrix of correlation 

coefficients for all the time series of Table 2 and for each window and shift indicated in Table 3. 

In Table 4 the entries of correlation matrix R for w=1 and sh=1 are presented, the rest, obtained 

with the other values of w and sh, are in the Appendix 1. To measure the significance of each 

correlation we have applied the t-test. The resulting P matrix for w=1 and sh=1 is presented in 

Table 5, and the rest can be seen in Appendix 1. In every correlation matrix R we have 

considered the correlation values R(i,j) higher than 0.7071 (i.e. a determination coefficient R2 > 

0.5) with a significance level of 95% i.e. P(i,j) < 0.05. Such values are highlighted in yellow in 

Tables 4 and 5. Each P(i,j) value gives the probability of getting a correlation as large as the 

observed value by random chance, when the true correlation is zero. 
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Table 4. Correlation matrix R. w=1 month, sh= 1 month.  Yellow if  |R(i,j)|>0.7071 (R(i,j)2>0.5) 

 S D T S_dt D_dt T_dt S_fd D_fd T_fd VS VD VT 

S 1 -0.2439 0.2014 0.7317 -0.1072 -0.0308 0.2651 -0.0307 0.0322 0.2568 -0.0484 0.0423 

D  1 -0.6270 -0.0617 0.4828 -0.0885 -0.0491 0.5390 -0.0626 -0.1447 0.6106 -0.1054 

T   1 -0.0227 -0.0311 0.2162 0.1139 -0.0941 0.3110 0.1349 -0.2259 0.3114 

S_dt    1 -0.1259 -0.1649 0.2908 0.0018 -0.0833 0.2960 0.0267 -0.0747 

D_dt     1 -0.1534 -0.0086 0.5122 -0.0238 -0.0396 0.5334 -0.0271 

T_dt      1 0.2436 -0.0297 0.1539 0.2736 -0.0567 0.1535 

S_fd       1 -0.0849 0.1476 0.8607 -0.0510 0.1495 

D_fd        1 -0.1962 -0.1692 0.8761 -0.2584 

T_fd         1 0.1485 -0.1922 0.9896 

VS          1 -0.1373 0.1633 

VD           1 -0.2568 

VT            1 
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Table5. t-test matrix P. w=1 sh=1. 

 S D T S_dt D_dt T_dt S_fd D_fd T_fd VS VD VT 

S 1 0.0263 0.0679 0.0000 0.3347     0.7820    0.0154    0.7826     0.7728    0.0191    0.6642     0.7039 

D  1 0.0000 0.5798    0.0000     0.4265   0.6595 0.0000 0.5740 0.1917 0.0000 0.3429 

T   1 0.8386 0.7802 0.0497   0.3052 0.3977 0.0042 0.2239 0.0400   0.0042 

S_dt    1 0.2567 0.1363 0.0077 0.9868   0.4538 0.0066 0.8104  0.5019 

D_dt     1 0.1662 0.9385 0.0000 0.8307 0.7223 0.0000 0.8077 

T_dt      1 0.0265 0.7899 0.1649 0.0123 0.6106 0.1658 

S_fd       1 0.4451 0.1831 0.0000 0.6473 0.1773 

D_fd        1 0.0754 0.1262 0.0000 0.0183 

T_fd         1 0.1802 0.1817 0.0000 

VS          1 0.2157 0.1402 

VD           1 0.0191 

VT            1 
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The significative correlations for all the time windows, w, and all the shifts, sh, are presented in 

Tables 6 and 7. The correlation between different time series are highlighted in blue.  

 

Table 6. Significant linear correlations coefficient R(i,j) between data sets for different when w 
equal to sh. 

w=1, sh=1 w=3 (seasonal); sh=3 w=6; sh=6 w=12; sh=12 

S,Sdt (0.7317) 

Sfd,Vs(0.8607) 

Dfd,VD(0.8761) 

Tfd,VT(0.9896) 

D,T (-0.8154) 

 

Dfd,D(-0.8503) 

Tfd,T(-0.8686) 

VD,Dfd(0.7698) 

D,T(-0.8594) 

D, Tfd(0.776) 

T,Dfd(0.7752) 

Tdt,T(0.9842) 

VD,T(-0.9057) 

VD,Sdt(0.8138) 

VD,Tdt(-0.9014) 

 

 

 

Table 7. Significant linear correlations coefficient R(i,j) between data sets for different w and 
sh=1.  
w=2; sh=1 w=3 (seasonal); sh=1 w=6; sh=1 w=12; sh=1 

T,D (-0.7354) 

S, Sdt(0.7195) 

 

T,D (-0.8057) 

 

T,D(-0.9044) 

Tfd,Dfd(-0.8010) 

T,D(-0.7807) 

D,Tdt(-0.7586) 

D,Ddt(0.8060) 

T,Tdt(0.9904) 

VD-Sdt (0.7567) 

 

 

 

The main findings of this analysis are: 

• w=1, sh=1. There are only expected correlations between Spot prices (S) and their first 

differences (Sdt), the first differences of spot prices (Sfd), Disturbances (Dfd) and Total 

Consumptions (Tfd) and their logarithms (Vs, VD , VT ). 

• w=2 and w=3. A strong correlation (higher than 0.7) appears between Total 

Consumption (T) and Disturbances (D).  

• w=6. A strong correlation between T and D is still preserved both for sh=1 and sh=6. 

Moreover, for sh=6 a correlation between their first differences appears, but for sh=1 the 

relation is between D and T respectively and the first differences of T and D . 

• w=12. the relationships between T and D are confirmed even for sh=12 and for sh=1. For 

both sh values volatility of disturbances starts to be correlated with the Spot prices and 

Total Consumption de-trended.  
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Since we are interested mostly in the correlations between price and disturbances we can 

conclude that it exists only for w=12 and sh=12 or sh=1, particularly between the volatility of 

disturbances and the mean Spot prices de-trended. 

 

3.2. Principal Component Analysis (PCA) 

Principal component analysis (PCA) is a technique used to reduce multidimensional data sets 

(Jackson, 1991, Jolliffe, 2002). It is a way to identify patterns (linear) in data and then to 

compress them by reducing the number of dimensions without much loss of information. 

The main steps in the case of m time series mXXX ,...,, 21  of length n are the followings. The 

mean is subtracted to each time series in order to have data sets with mean 0: 
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where ( )i
n

ii XXX ,...,1=  and iX is the mean value of iX . Then the covariance matrix it is 

calculated as follows: 
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The eigenvalues and eigenvectors of COV are calculated too. With the eigenvectors of the 

covariance matrix it is possible to extract lines that characterize the data. The eigenvector with 

the highest eigenvalue is the principal component of the data set. The columns of the 

eigenvector matrix and eigenvalue matrix are sorted in order of decreasing eigenvalues. A 

subset of the eigenvectors is selected as basis vectors: the more significant and the others are 

cancelled. Usually those eigenvalues which sum is 90% of the sum of all eigenvalues are 

considered.  The original data matrix without means is represented in the new basis.  

The first principal component is that linear combination of the original variables which accounts 

for the maximum amount of variance in a single line. It is the line of best fit through the data, 
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and the residual variance about this line is then a minimum for the data set. The second principal 

component is that line which is orthogonal to the first principal component and accounts for the 

maximum amount of the remaining variance in the data. The first two components therefore 

represent the plane of best fit through the data. All remaining principal components are defined 

similarly, such that the lowest order components normally account for very little variance and 

can usually be ignored. The eigenvalues obtained from Principal Components Analysis are equal 

to the variance explained by each of the principal components, in decreasing order of 

importance. The eigenvectors are weightings with loadings that, when applied to the original 

data, obtain principal component scores for the observations. A large positive or negative value 

indicates a variable that is correlated, either in a positive or a negative way, with the component. 

The function princomp of MATLAB ® is applied to calculate loadings, the eigenvalues and then 

the percentage of variance explained by each component when w and sh vary in accordance with 

Table 3.  

 
Table 8. Summary of PCA results. 

w sh # points #PC to explain at  

least 50% variance 

% variance 

explained 

#PC to explain at 

least 90% variance 

% variance 

explained 

1 1 83 3 63.39 6 91.03 

2 1 82 3 53.08 8 91.08 

3 1 81 3 56.35 8 92.67 

6 1 78 3 62.62 7 92.85 

12 1 72 2 54.80 6 93.26 

3 3 27 3 56.55 7 91.69 

6 6 13 2 61.44 5 94.38 

12 12 6 2 65.63 4 96.75 

 

The main results of this analysis are presented in Table 8 and in Appendix 2. In the first two 

columns there are the values of w and sh and, in the third, the number of points of each time 

series considered in calculating PCA. In the fourth column the number of principal components 

able to explain at least the 50% of variance is listed. It seems that an hyper plane of dimension 

three can fit the data. This is not so strange since we built the twelve time series starting from 

three of them (S, D, T), but if we are interested in explaining at least 90% of variance we can see 

that we need always more than 3 principal components. Sometimes even 8 principal components 

are necessary i.e. the original time series and their first difference, for example, do not contain 

still all the independent information. 
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3.3. Cross Correlation Function (CCF) 

Cross correlation is a generalization of the correlation coefficient and a standard method of 

estimating the degree to which two series are correlated when we shift them one in respect to the 

others (Orfanidis, 1996). Let we consider two time series Xi and Yi where i=1,1,2...n. The cross 

correlation R at delay d is defined as 
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Where X and Y  are the means of the corresponding series. If Eq. 12 is computed for all delays 

d =-(n-1),..0,1,2,...(n-1) then it results in a cross correlation series of twice the length of the 

original series. For d=0 it becomes the linear correlation coefficient R(X,Y). 

We have calculated the cross correlation function for every window, w, and every shift, sh, of 

Table 3 using the MATLAB® function xcov. In Figure 10 we have plotted only CCFs obtained 

using disturbances, spot prices or their modification and for which the maximum of correlation 

function reach a value of at least 0.5. 

In Figure 10 it is possible to observe that there are significant correlations between Spot Prices 

and Disturbances (or their modifications) only on windows of 6 or 12 months. The maximum 

values obtained are listed in Table 9 together with the correlation coefficients without delay, 

R(0), and the p values of the t-tests. 
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Figure 10. CCFs as a function of the delay. 

 
 

Table 9. Results from the cross correlation analysis. 
Time 
series 

w sh R(0) p delay 
(months) 

R(delay) p 

VS VD  12 1 0.5183 0.0000 -6 0.8906 0.0000 
VS VD  6 1 0.1855 0.1040 -6 0.5959 0.0000 
Sdt VD 12 1 0.7567 0.0000 -3 0.8536 0.0000 
Sfd VD 6 1 -0.4273 0.0001 -8 0.7430 0.0000 
Sfd VD 6 6 -0.7778 0.0017 -1 0.8725 0.0002 
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VD is correlated with price volatility, price first difference and price de-trended but only 

considering windows of six or twelve months. It is not so correlated with the price itself. In 

Figure 11 we have plotted the correlation function, using w=2 and sh=1, between D-T, D-Tfd, 

and, in both cases, the correlation becomes higher than 0.6. Moreover, one can observe the 

regularity of the damping of the correlation function, which is even more important that the 

correlation value itself, because it detects a similarity in the dynamic and not only in the static 

properties. For these reasons, we have also plotted the correlation function between D-Sfd and 

D-S which, that, even if it never reaches R-values higher than 0.4, it has a regular oscillating  

behaviour in respect to the delay. 
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Figure 11. Cross Correlation functions for Disturbances with w = 2, sh =1. 

 

3.4. Cross Recurrence Plot (CRP) 

CRP is a bivariate extension of RP and was introduced to analyse the dependencies between two 

different time series by comparing their joint recurrence (Marwan and Kurths, 2002). It can be 

considered as a generalization of the linear cross-correlation function (Marwan et al. 2007). 

If we have two dynamical systems, see Fig. 12, which trajectories are respectively ji yx ,  where 

i=1,…,n, j=1,…,m, the CRP matrix is defined by: 
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)()(, ji
yx
ji yxji −−Θ= εεCR  (13) 

where i=1, …, n; j=1, …m. 
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Figure 12. Cross Recurrence plot (CRP) construction. 

 
To quantify the CRP, different measures were introduced based on the percentage of the number 

of recurrent points forming diagonal, vertical or orthogonal lines. The lines which are diagonally 

oriented are of mayor interest in fact they represent segments of both trajectories, which run 

parallel for some time. The frequency and length of these lines are related to a similarity 

between the two dynamical systems which cannot be detected by the common cross-correlation. 

If a time dilatation or compression of one of the trajectories is applied then a distortion of the 

diagonal lines appear in the CRP. In the following analysis we have applied CRP toolbox which 

is free downloadable from http://www.agnld.uni-potsdam.de/~marwan/toolbox/ . 

In order to better understand the potentiality of this representation let we consider some 

examples. In figure 13 a) we have applied CRP to two identical time series: )sin( tπ  then the 
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CRP contains the main diagonal line of identity (underlined in red). If we consider a time 

distortion in the second trajectory in such a way that it becomes ))5.1sin(sin( tt +π  then the LOI 

will be distorted and the new line is called line of synchronization (LOS), see Fig 13 b. If we 

stretch or compress the second trajectory and it becomes )3sin( tπ  , the LOS will be a straight 

line but not parallel to the main diagonal, see Figure 13 c).  The local slope in CRP corresponds 

to the transformation of the time axes of the two considered trajectories. A time shift between 

the trajectories causes a dislocation of the LOS. Hence LOS allows finding the rescaling 

function between different time series. 
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    a)     b)     c) 
Figure 12. a) CRP(sin(πt),sin(πt)); b) CRP(sin(πt),sin(πt+sin(1.5t)); c) CRP(sin(πt),sin(3πt). 
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a)      b)  

Figure 14: a) CRP (sin(πt),cos(πt)),   b) CRP (sin(3π t),cos(π t)). 
 

In Fig 14 a) the LOS has slope 1 and it detects a linear correlation between the two time series , 

if we shift them by 50 units (which corresponds to π/2 in the unit considered) then we can 

synchronise the system. In Figure 14 b) the series detect two dynamics shifted and with different 
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speeds (the first: sin(3π t) is faster), we can read this information on the LOS slope (higher than 

one) and on its translation. 

- Detection of changes in the correlation using LOS: An example 

CRP correlation detection can be even more useful when the correlation between two time series 

change in time. This is because the technique is able of detecting the window of correlation. In 

fact, if we consider two time series in which we introduce a break in the correlation: 

- first time series: y1(t)=sin(π.*t), if t=[-1:0.01:1];  

- second time series: y2(t)=cos(π.*t), if t=[-1:0.01:0] and y2(t)=cos(π.*t/2) if t=[0:0.01:1]; 

The CRP and the LOS are shown in Figure 15. 

 

 
Figure 15. CRP when a change in correlation occurs. 

 
The linear correlation coefficient of the two complete series is R =0.1687 with a t-test with 

P=0.0000. Using the window suggested by LOS, i.e. y1(10:109), y2(1:100), R becomes: 0.9048 

with P=0.0000. If we calculate R on the remaining parts: y1(110:201), y2(101:201-9) R 

becomes 0.2851 with P=0.0059. 

A disadvantage of using CRP is that in order to obtain a good LOS quality, which means that 

information given by LOS show real changes in the correlation properties, there is the need of a 
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certain minimum amount of points. In this work we have been able to obtain good LOS quality 

using only data with w= 2 and sh =1; in the other cases there were not enough points to perform 

this analysis.  

- Line Of Synchronization:: Algorithm and Quality 

The Line of Synchronization algorithm is presented in Marwan et al. (2007) and it consists on an 

iterative search of recurrent points in CRP starting from the first point next to the axes origin 

and then looking in a predefined window. If this window does not contain other recurrence 

points, it is increased. If there are subsequent recurrence points in y-direction (x-direction) the 

window size is iteratively increased in y-direction (x-direction) until a predefined size dx*dy or 

until no recurrence points are found. 

Moreover Marwan et al. (2007) introduced the following indicator as the LOS Quality: 

100*
NgNt

Nt
Q

+
=  (14) 

where Nt is the number of target points and Ng the number of gap points. The larger is Q the 

better is LOS.  

- LOS calculation of real time series. 

In this section, using Cross Correlation Function, we have observed correlations between VD 

and Sfd, VD  and Sdt, VD and Sfd. These time series do not have enough points to show a 

reliable Line of Synchronization. For this reason we have to consider only small windows of 

data. The smallest window that we can use is w=2 in order to calculate standard deviation and 

the minimum shift is one. In Figures 16-17 the time series considered in these analyses are 

plotted as a function of time unit. 

Figure 16. Time series for w = 2, sh=1 
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Figure 17. time series for w =2, sh=1. 
 

It is interesting to see that when the price increase between 30 and 40 time units, due to the dry 

period, the volatility of disturbance increases too with a certain delay. Looking only to 

Disturbances and Spot prices such relationship is less evident.  

In Figure 18 we have represented CRP for the series of Disturbances (D) in respect of the other 

time series of Table 2 with (w=2, sh=1) together with their LOS, in order to see if it is possible 

to extract information about possible correlations between the time series on some time 

windows that are not clear from the correlation function. In Figure 19 we have plotted the CRP 

considering the volatility of disturbances (VD) instead of the disturbances themselves.  
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a)  VT-D, Q=74.91 b)   VD-D, Q=82.82 c)   VS-D, Q=72.43 

d) Tfd-D, Q=80.40 e) Dfd-D, Q=81.69 f)   Sfd-D, Q=64.32 

g) Tdt-D, Q=76.23 h) Ddt,D, Q=74.76 i)      Sdt-D, Q=78.08 



 30 

10 20 30 40 50 60 70 80

-4

-2

0

2

4

10 20 30 40 50 60 70 80
-4

-2

0

2

4

Underlying Time Series

Cross Recurrence Plot 
Dimension: 1,  Delay: 1,  Threshold: 0.5σσσσ (fixed distance euclidean norm) 

 

 

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

 

10 20 30 40 50 60 70 80

-4

-2

0

2

4

10 20 30 40 50 60 70 80
-4

-2

0

2

4

Underlying Time Series

Cross Recurrence Plot 
Dimension: 1,  Delay: 1,  Threshold: 0.5σσσσ (fixed distance euclidean norm) 

 

 

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

 

 

Figure 18. CRP with w=2; sh=1; 

 

                      

Figure 19. CRP of VS-VD (left) and CRP of  Sdt-VD (right). 

 

Looking to Figures 18 and 19 it is possible to observe that many cross recurrent plots have a 

white horizontal band between 30 and 40 points as indicated in Table 10.  

 

Table 10: white band in CRP. 
Serie Band points Real date 
Sfd_D 30-40 July 02-April 03 
VD-D 36-42 January 03- July 03 
VS-D 30-40 July 02- April 03 
Tdt-D 33-40 0ctober 02-April 03 
S-D 33-40 October 02-April 03 

l)     T-D, Q=69.89 m)       S-D, Q=69.32 
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The periods of Table 10 correspond to the ones in which the price increases due to a dry period 

and then a high dependence from external sources of energy appeared and probably a change in 

the correlation properties. The presence of this wide white bands causes, in general, a change in 

the properties of LOS because it is not possible to find near recurrence points and the algorithm 

double the step search. This is evident for example in Figure 18 for the first differences of prices 

(Sfd) in respect of disturbances (D). It seems that the correlation properties i.e. the LOS 

parallelism  to the main diagonal of CRP, change after crossing the band. The same happens for 

the correlation between some variables such as S, Tdt, VS, Sfd with D. To confirm the 

hypothesis that LOS allows in detecting windows of higher linear correlation, we have 

compared the correlation of the entire time series with the one obtained using only the portion of 

the data in which the LOS is parallel to the main diagonal (RLOS) and with the one suggested by 

the correlation function (RCCF) i.e. obtained translating the entire time series. All the results are 

shown in Table 11. 

 

Table 11.  Correlation coefficient for different portion of the time series. ns: not significative. R: 
correlation Coefficient of the entire time series and without shift. RCCF:  max correlation 
obtained using Cross Correlation Function. RLOS: Correlation coefficient of the portion of the 
time series suggested by LOS. 
 
Figure Q Serie and 

total 
points  
considered 

R RCCF Interval 
suggested by 
LOS  

RLOS  Date  
correspondent 
to the points  
considered 

m) 69.32 D(1:83); 
S(1:83); 

-0.2692 -0.2692 D(18:28);  
S(18:28); 

0.3979 
(ns) 

July 01- 
May 02 

l) 69.89 D(1:83); 
T(1:83) 

-0.7354 -0.7354 D(1:30); 
T(1:30) 

-0.8037 Feb 00- 
Sept 01 

f) 64.32 D(1:83); 
Sfd(1:83) 

0.0702 -0.3529 D(1:30); 
Sfd(1:30) 

-0.3953 Feb 00- 
July 02 

e) 81.69 D(1:83); 
Dfd(1:83) 

-0.4119 -0.6809 D(1:19); 
Dfd(2:20) 

-0.7021 Feb 00- 
June 02 
March 00 
-July 01  

d) 80.40 D(1:83); 
Tfd(1:83) 

0.2429 0.6896 D(1:60); 
Tfd(3:62) 

0.7455 Feb 00-July 06 
May 00-Dec 
06 

 76.4632 VD(1:83) 
Sdt(1:83) 

0.1545 0.4418 VD(1:35); 
Sdt(7:41) 

-0.2248 
(ns) 

Feb 00-Dec 02 

 

When, looking to CRP of fig 18-19 a portion of LOS parallel to the main diagonal (listed in 

Table 11) detected a window of higher linear correlation (see column 7) in comparison with the 



 32 

one calculated using all the points (column 4) or the one obtained shifting the two time series as 

the Cross Correlation Function suggested (see Fig 11 and column 5).  Moreover, looking to 

Table 11, we can observe that LOS allows identifying the time in which Spot Prices changes for 

the starting of the dry period (July 2002) and in which the prices increase due to the dependence 

from external sources.   

Moreover, as we can see from Figure 17 a spike in VS is followed by a spike in VD and we can  

observe that the two dynamics can be correlated even after the dry period but with a delay. 

Looking at Figure 19, after the white band, we see that the LOS is still parallel to the main 

diagonal but with a shift. We have measured the correlation coefficients on the intervals 

indicated by LOS and we have obtained again an improvement (results not shown) with respect 

to considering all the time series, eventually shifted, but, perhaps due to the small amount of 

points, the correlation values are not significative. 

 

4. Conclusions 

In this work we have analysed possible correlations between electricity prices and disturbances 

in the Nordic Region (Denmark, Finland, Norway and Sweden) from January 2000 until 

December 2006. By a preliminary treatment of the three original time series we have obtained 

other nine time series: three without trends, three first differences and three volatilities (Eqs. 1-

3). The set of 12 time series is then grouped using different time windows and translated by 

different shifts (see Table 3). 

First we have analysed the time series obtained using the linear correlation coefficient R. We 

have found a strong linear correlations, i.e. R higher than 0.7, for windows of twelve months 

(see Table 6) between the volatility of disturbances and the de-trended spot price. 

Applying the Principal Component Analysis to the  12 time series, we have observed that more 

than 3 PCs are necessary to explain at least the 90% of variance, therefore the treated time series  

contain independent information in comparison with the first three ones (Disturbances, Spot 

prices and Total Consumption). 

In Figure 10 we have plotted some Cross Correlation Functions and we have seen that the linear 

correlation between the time series can be increased shifting them. The maximum correlation 

values obtained are listed in Table 9. We have found that disturbance volatility is correlated with 

price volatility, price first difference and de-trended price, but only considering window of six 

or twelve months.  Disturbance volatility is not so much correlated with the price itself. In 

Figure 11 we have plotted the correlation functions between D-Sfd and D-S which, even if it 
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never reaches values higher than 0.4, it has a regular oscillating behaviour in respect to the delay 

and this can be a sign of similarity between the two dynamics. 

Finally we have applied Cross Recurrence Plot analysis, which gives an extension of the Cross 

Correlation Function and it helps to detect portion of the time series that are linear correlated. 

The only problem in performing this analysis is the amount of points necessary. For this reason 

we have analysed only the case of w=2 (minimum to calculate standard deviation) and sh=1. In 

Table 11 it is shown how, using CRP, higher correlated data windows are detected.  A 

relationship between the volatility of Spot prices and the volatility of disturbances appears in Fig 

17, in which the spike in the price in correspondence of a dry period is followed, with a certain 

delay, by a spike in the disturbances. This correlation is confirmed by CRP representation given 

in Figure 19, where it seems that the two time series are synchronised before the dry period but 

after a delay appears between them. The only disadvantage of CRP is that we can apply it and 

extracting reliable information only if we have a minimum amount of data. It would be 

interesting to repeat the analysis performed in this work using daily data of disturbances and 

consumption. 
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 Appendix 1 Correlation matrices and t-test 

- Window=3 (seasonal), shift=3; 

R = 
    1.0000   -0.2593    0.1333    0.6728   -0.2086    0.0817   -0.1413    0.0169   -0.1247   -0.1156   -0.0025    0.0752 
   -0.2593    1.0000   -0.8154   -0.0508    0.4328   -0.1900    0.0650   -0.5204    0.4788    0.0342    0.0082   -0.0455 
    0.1333   -0.8154    1.0000   -0.0724   -0.0414    0.2034    0.0331    0.0773   -0.3500    0.0031   -0.1754    0.3753 
    0.6728   -0.0508   -0.0724    1.0000   -0.2381   -0.1965   -0.2660    0.0180   -0.1039    0.0357    0.2702   -0.1705 
   -0.2086    0.4328   -0.0414   -0.2381    1.0000   -0.2613   -0.0555   -0.2481    0.0516   -0.0845    0.0407    0.1951 
    0.0817   -0.1900    0.2034   -0.1965   -0.2613    1.0000    0.5799    0.0528   -0.0040    0.0304   -0.0543    0.0647 
   -0.1413    0.0650    0.0331   -0.2660   -0.0555    0.5799    1.0000   -0.1939    0.3568   -0.0085   -0.4753    0.0245 
    0.0169   -0.5204    0.0773    0.0180   -0.2481    0.0528   -0.1939    1.0000   -0.5531   -0.1126    0.5404   -0.3603 
   -0.1247    0.4788   -0.3500   -0.1039    0.0516   -0.0040    0.3568   -0.5531    1.0000    0.0373   -0.4220   -0.2978 
   -0.1156    0.0342    0.0031    0.0357   -0.0845    0.0304   -0.0085   -0.1126    0.0373    1.0000    0.0490    0.1020 
   -0.0025    0.0082   -0.1754    0.2702    0.0407   -0.0543   -0.4753    0.5404   -0.4220    0.0490    1.0000   -0.2325 
    0.0752   -0.0455    0.3753   -0.1705    0.1951    0.0647    0.0245   -0.3603   -0.2978    0.1020   -0.2325    1.0000 

P = 
    1.0000    0.1915    0.5073    0.0001    0.2964    0.6854    0.4820    0.9332    0.5355    0.5658    0.9902    0.7095 
    0.1915    1.0000    0.0000    0.8014    0.0241    0.3424    0.7473    0.0054    0.0115    0.8654    0.9676    0.8218 
    0.5073    0.0000    1.0000    0.7197    0.8374    0.3090    0.8700    0.7015    0.0735    0.9879    0.3816    0.0538 
    0.0001    0.8014    0.7197    1.0000    0.2318    0.3260    0.1800    0.9291    0.6059    0.8597    0.1729    0.3951 
    0.2964    0.0241    0.8374    0.2318    1.0000    0.1880    0.7833    0.2121    0.7982    0.6753    0.8401    0.3294 
    0.6854    0.3424    0.3090    0.3260    0.1880    1.0000    0.0015    0.7936    0.9840    0.8804    0.7880    0.7484 
    0.4820    0.7473    0.8700    0.1800    0.7833    0.0015    1.0000    0.3325    0.0677    0.9665    0.0122    0.9033 
    0.9332    0.0054    0.7015    0.9291    0.2121    0.7936    0.3325    1.0000    0.0028    0.5760    0.0036    0.0649 
    0.5355    0.0115    0.0735    0.6059    0.7982    0.9840    0.0677    0.0028    1.0000    0.8534    0.0283    0.1313 
    0.5658    0.8654    0.9879    0.8597    0.6753    0.8804    0.9665    0.5760    0.8534    1.0000    0.8083    0.6128 
    0.9902    0.9676    0.3816    0.1729    0.8401    0.7880    0.0122    0.0036    0.0283    0.8083    1.0000    0.2432 
    0.7095    0.8218    0.0538    0.3951    0.3294    0.7484    0.9033    0.0649    0.1313    0.6128    0.2432    1.0000 
 

- Window = 6; shift = 6; 

R = 
    1.0000   -0.4047    0.3100    0.5402   -0.1778    0.2332   -0.2855    0.2637   -0.1955   -0.0971    0.3099    0.3250 
   -0.4047    1.0000   -0.8594   -0.1892    0.6352   -0.3381    0.2550   -0.8503    0.7665   -0.0158   -0.5359   -0.3012 
    0.3100   -0.8594    1.0000    0.0219   -0.2717    0.4335   -0.1567    0.7752   -0.8686    0.0018    0.4301    0.5935 
    0.5402   -0.1892    0.0219    1.0000   -0.2351   -0.1793   -0.3495    0.3018   -0.1575    0.2447    0.5391    0.0171 
   -0.1778    0.6352   -0.2717   -0.2351    1.0000   -0.4916   -0.1291   -0.3401    0.0532   -0.2625   -0.1439    0.1929 
    0.2332   -0.3381    0.4335   -0.1793   -0.4916    1.0000    0.5172   -0.0417    0.0633    0.2126   -0.3194    0.3222 
   -0.2855    0.2550   -0.1567   -0.3495   -0.1291    0.5172    1.0000   -0.5204    0.4549    0.4273   -0.7778    0.2901 
    0.2637   -0.8503    0.7752    0.3018   -0.3401   -0.0417   -0.5204    1.0000   -0.8924   -0.0864    0.7698    0.2625 
   -0.1955    0.7665   -0.8686   -0.1575    0.0532    0.0633    0.4549   -0.8924    1.0000    0.1011   -0.6590   -0.4628 
   -0.0971   -0.0158    0.0018    0.2447   -0.2625    0.2126    0.4273   -0.0864    0.1011    1.0000   -0.0014    0.3053 
    0.3099   -0.5359    0.4301    0.5391   -0.1439   -0.3194   -0.7778    0.7698   -0.6590   -0.0014    1.0000   -0.0562 
    0.3250   -0.3012    0.5935    0.0171    0.1929    0.3222    0.2901    0.2625   -0.4628    0.3053   -0.0562    1.0000 

P = 
    1.0000    0.1702    0.3026    0.0567    0.5611    0.4433    0.3444    0.3839    0.5221    0.7524    0.3028    0.2786 
    0.1702    1.0000    0.0002    0.5358    0.0197    0.2585    0.4004    0.0002    0.0022    0.9593    0.0591    0.3173 
    0.3026    0.0002    1.0000    0.9434    0.3693    0.1389    0.6091    0.0019    0.0001    0.9954    0.1424    0.0325 
    0.0567    0.5358    0.9434    1.0000    0.4394    0.5579    0.2417    0.3162    0.6074    0.4203    0.0573    0.9557 
    0.5611    0.0197    0.3693    0.4394    1.0000    0.0879    0.6741    0.2555    0.8631    0.3863    0.6391    0.5278 
    0.4433    0.2585    0.1389    0.5579    0.0879    1.0000    0.0703    0.8923    0.8371    0.4856    0.2874    0.2831 
    0.3444    0.4004    0.6091    0.2417    0.6741    0.0703    1.0000    0.0683    0.1184    0.1453    0.0017    0.3363 
    0.3839    0.0002    0.0019    0.3162    0.2555    0.8923    0.0683    1.0000    0.0000    0.7791    0.0021    0.3863 
    0.5221    0.0022    0.0001    0.6074    0.8631    0.8371    0.1184    0.0000    1.0000    0.7424    0.0143    0.1112 
    0.7524    0.9593    0.9954    0.4203    0.3863    0.4856    0.1453    0.7791    0.7424    1.0000    0.9965    0.3104 
    0.3028    0.0591    0.1424    0.0573    0.6391    0.2874    0.0017    0.0021    0.0143    0.9965    1.0000    0.8553 
    0.2786    0.3173    0.0325    0.9557    0.5278    0.2831    0.3363    0.3863    0.1112    0.3104    0.8553    1.0000 
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- Window =12; shift =12 

R= 
    1.0000   -0.1224   -0.1710    0.4665    0.5750   -0.3117   -0.5668    0.5599   -0.1739   -0.4327    0.3599    0.4001 
   -0.1224    1.0000   -0.5911    0.6509    0.6041   -0.4968    0.2140   -0.4577   -0.3629    0.7903    0.4244    0.4273 
   -0.1710   -0.5911    1.0000   -0.6735   -0.3835    0.9842    0.4892    0.6237   -0.0832   -0.5198   -0.9057    0.0590 
    0.4665    0.6509   -0.6735    1.0000    0.5149   -0.6494   -0.5304   -0.0414   -0.3383    0.1474    0.8138    0.2562 
    0.5750    0.6041   -0.3835    0.5149    1.0000   -0.4414    0.0954    0.0754   -0.3796    0.4136    0.2583    0.7939 
   -0.3117   -0.4968    0.9842   -0.6494   -0.4414    1.0000    0.5488    0.5369   -0.1049   -0.4368   -0.9014    0.0205 
   -0.5668    0.2140    0.4892   -0.5304    0.0954    0.5488    1.0000   -0.1192   -0.1006    0.4843   -0.7498    0.3983 
    0.5599   -0.4577    0.6237   -0.0414    0.0754    0.5369   -0.1192    1.0000   -0.5067   -0.7924   -0.3952    0.1674 
   -0.1739   -0.3629   -0.0832   -0.3383   -0.3796   -0.1049   -0.1006   -0.5067    1.0000    0.0679    0.1192   -0.1203 
   -0.4327    0.7903   -0.5198    0.1474    0.4136   -0.4368    0.4843   -0.7924    0.0679    1.0000    0.1885    0.3123 
    0.3599    0.4244   -0.9057    0.8138    0.2583   -0.9014   -0.7498   -0.3952    0.1192    0.1885    1.0000   -0.0917 
    0.4001    0.4273    0.0590    0.2562    0.7939    0.0205    0.3983    0.1674   -0.1203    0.3123   -0.0917    1.0000 

P= 
    1.0000    0.8172    0.7460    0.3510    0.2326    0.5476    0.2408    0.2479    0.7418    0.3915    0.4835    0.4319 
    0.8172    1.0000    0.2166    0.1615    0.2041    0.3161    0.6839    0.3614    0.4796    0.0614    0.4017    0.3981 
    0.7460    0.2166    1.0000    0.1425    0.4530    0.0004    0.3247    0.1857    0.8754    0.2905    0.0129    0.9115 
    0.3510    0.1615    0.1425    1.0000    0.2959    0.1628    0.2791    0.9380    0.5119    0.7805    0.0488    0.6241 
    0.2326    0.2041    0.4530    0.2959    1.0000    0.3809    0.8574    0.8872    0.4579    0.4150    0.6212    0.0594 
    0.5476    0.3161    0.0004    0.1628    0.3809    1.0000    0.2594    0.2721    0.8432    0.3865    0.0141    0.9693 
    0.2408    0.6839    0.3247    0.2791    0.8574    0.2594    1.0000    0.8220    0.8497    0.3304    0.0861    0.4342 
    0.2479    0.3614    0.1857    0.9380    0.8872    0.2721    0.8220    1.0000    0.3050    0.0602    0.4381    0.7512 
    0.7418    0.4796    0.8754    0.5119    0.4579    0.8432    0.8497    0.3050    1.0000    0.8984    0.8221    0.8204 
    0.3915    0.0614    0.2905    0.7805    0.4150    0.3865    0.3304    0.0602    0.8984    1.0000    0.7206    0.5468 
    0.4835    0.4017    0.0129    0.0488    0.6212    0.0141    0.0861    0.4381    0.8221    0.7206    1.0000    0.8628 
    0.4319    0.3981    0.9115    0.6241    0.0594    0.9693    0.4342    0.7512    0.8204    0.5468    0.8628    1.0000 
 
 
- Window =2; shift =1 

R = 
    1.0000   -0.2692    0.1775    0.7195   -0.1748    0.0543   -0.1541    0.0242   -0.0508    0.1353    0.0195    0.0696 
   -0.2692    1.0000   -0.7354   -0.0689    0.3791   -0.1185    0.0702   -0.4119    0.2429    0.0730    0.1785   -0.1720 
    0.1775   -0.7354    1.0000   -0.0331   -0.0376    0.2229    0.0249    0.0811   -0.2756   -0.0683   -0.1530    0.3387 
    0.7195   -0.0689   -0.0331    1.0000   -0.2024   -0.1431   -0.2229    0.0175   -0.0808    0.3428    0.1545   -0.0496 
   -0.1748    0.3791   -0.0376   -0.2024    1.0000   -0.2039   -0.0204   -0.2593    0.0282   -0.1574    0.1379    0.0332 
    0.0543   -0.1185    0.2229   -0.1431   -0.2039    1.0000    0.5048    0.0152   -0.0871    0.0372   -0.1166    0.1482 
   -0.1541    0.0702    0.0249   -0.2229   -0.0204    0.5048    1.0000   -0.2136    0.2398   -0.0919   -0.2885    0.0416 
    0.0242   -0.4119    0.0811    0.0175   -0.2593    0.0152   -0.2136    1.0000   -0.4489   -0.0309    0.3995   -0.0508 
   -0.0508    0.2429   -0.2756   -0.0808    0.0282   -0.0871    0.2398   -0.4489    1.0000   -0.0466   -0.2556   -0.1539 
    0.1353    0.0730   -0.0683    0.3428   -0.1574    0.0372   -0.0919   -0.0309   -0.0466    1.0000    0.0602    0.0289 
    0.0195    0.1785   -0.1530    0.1545    0.1379   -0.1166   -0.2885    0.3995   -0.2556    0.0602    1.0000   -0.0059 
    0.0696   -0.1720    0.3387   -0.0496    0.0332    0.1482    0.0416   -0.0508   -0.1539    0.0289   -0.0059    1.0000 
 
P = 
    1.0000    0.0145    0.1107    0.0000    0.1162    0.6283    0.1669    0.8293    0.6507    0.2254    0.8622    0.5343 
    0.0145    1.0000    0.0000    0.5385    0.0004    0.2890    0.5306    0.0001    0.0279    0.5147    0.1086    0.1223 
    0.1107    0.0000    1.0000    0.7676    0.7373    0.0441    0.8244    0.4686    0.0122    0.5419    0.1700    0.0019 
    0.0000    0.5385    0.7676    1.0000    0.0682    0.1997    0.0441    0.8763    0.4704    0.0016    0.1659    0.6579 
    0.1162    0.0004    0.7373    0.0682    1.0000    0.0662    0.8560    0.0187    0.8017    0.1578    0.2165    0.7672 
    0.6283    0.2890    0.0441    0.1997    0.0662    1.0000    0.0000    0.8925    0.4367    0.7400    0.2969    0.1841 
    0.1669    0.5306    0.8244    0.0441    0.8560    0.0000    1.0000    0.0540    0.0300    0.4113    0.0086    0.7106 
    0.8293    0.0001    0.4686    0.8763    0.0187    0.8925    0.0540    1.0000    0.0000    0.7826    0.0002    0.6506 
    0.6507    0.0279    0.0122    0.4704    0.8017    0.4367    0.0300    0.0000    1.0000    0.6778    0.0205    0.1675 
    0.2254    0.5147    0.5419    0.0016    0.1578    0.7400    0.4113    0.7826    0.6778    1.0000    0.5910    0.7964 
    0.8622    0.1086    0.1700    0.1659    0.2165    0.2969    0.0086    0.0002    0.0205    0.5910    1.0000    0.9578 
    0.5343    0.1223    0.0019    0.6579    0.7672    0.1841    0.7106    0.6506    0.1675    0.7964    0.9578    1.0000 
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- Window =3; shift=1 

R = 
    1.0000   -0.2857    0.1794    0.6949   -0.2155    0.0994   -0.0842    0.0184   -0.0598    0.1994   -0.0372    0.0954 
   -0.2857    1.0000   -0.8057   -0.0689    0.3557   -0.1463    0.0446   -0.3540    0.2741    0.0571    0.3571   -0.0829 
    0.1794   -0.8057    1.0000   -0.0396   -0.0401    0.2288    0.0258    0.1020   -0.2768    0.0117   -0.2939    0.3271 
    0.6949   -0.0689   -0.0396    1.0000   -0.2502   -0.1339   -0.1734    0.0278   -0.0903    0.4318    0.1680   -0.0499 
   -0.2155    0.3557   -0.0401   -0.2502    1.0000   -0.2247   -0.0721   -0.1879    0.0363   -0.1691    0.2137    0.0921 
    0.0994   -0.1463    0.2288   -0.1339   -0.2247    1.0000    0.5424   -0.0155   -0.0321    0.0930   -0.1768    0.2017 
   -0.0842    0.0446    0.0258   -0.1734   -0.0721    0.5424    1.0000   -0.2489    0.3217    0.0930   -0.3052    0.1432 
    0.0184   -0.3540    0.1020    0.0278   -0.1879   -0.0155   -0.2489    1.0000   -0.5756   -0.1397    0.3508   -0.1934 
   -0.0598    0.2741   -0.2768   -0.0903    0.0363   -0.0321    0.3217   -0.5756    1.0000   -0.0007   -0.2676   -0.1487 
    0.1994    0.0571    0.0117    0.4318   -0.1691    0.0930    0.0930   -0.1397   -0.0007    1.0000    0.0377    0.0626 
   -0.0372    0.3571   -0.2939    0.1680    0.2137   -0.1768   -0.3052    0.3508   -0.2676    0.0377    1.0000   -0.1280 
    0.0954   -0.0829    0.3271   -0.0499    0.0921    0.2017    0.1432   -0.1934   -0.1487    0.0626   -0.1280    1.0000 

P = 
    1.0000    0.0097    0.1091    0.0000    0.0534    0.3771    0.4548    0.8702    0.5959    0.0744    0.7416    0.3970 
    0.0097    1.0000    0.0000    0.5413    0.0011    0.1925    0.6924    0.0012    0.0133    0.6129    0.0011    0.4618 
    0.1091    0.0000    1.0000    0.7254    0.7220    0.0399    0.8194    0.3651    0.0124    0.9175    0.0078    0.0029 
    0.0000    0.5413    0.7254    1.0000    0.0243    0.2333    0.1216    0.8054    0.4227    0.0001    0.1338    0.6580 
    0.0534    0.0011    0.7220    0.0243    1.0000    0.0437    0.5226    0.0931    0.7477    0.1311    0.0554    0.4135 
    0.3771    0.1925    0.0399    0.2333    0.0437    1.0000    0.0000    0.8911    0.7762    0.4088    0.1144    0.0710 
    0.4548    0.6924    0.8194    0.1216    0.5226    0.0000    1.0000    0.0250    0.0034    0.4091    0.0056    0.2023 
    0.8702    0.0012    0.3651    0.8054    0.0931    0.8911    0.0250    1.0000    0.0000    0.2135    0.0013    0.0836 
    0.5959    0.0133    0.0124    0.4227    0.7477    0.7762    0.0034    0.0000    1.0000    0.9951    0.0157    0.1854 
    0.0744    0.6129    0.9175    0.0001    0.1311    0.4088    0.4091    0.2135    0.9951    1.0000    0.7383    0.5785 
    0.7416    0.0011    0.0078    0.1338    0.0554    0.1144    0.0056    0.0013    0.0157    0.7383    1.0000    0.2548 
    0.3970    0.4618    0.0029    0.6580    0.4135    0.0710    0.2023    0.0836    0.1854    0.5785    0.2548    1.0000 
 

 

-Window =6; shift=1 

R = 
    1.0000   -0.3463    0.1923    0.6105   -0.2231    0.2116   -0.0266    0.1143   -0.1268    0.2354    0.1002    0.1234 
   -0.3463    1.0000   -0.9044   -0.0615    0.4189   -0.2827    0.0008   -0.2796    0.3076   -0.0554    0.4163   -0.0634 
    0.1923   -0.9044    1.0000   -0.0495   -0.0647    0.2813    0.0437    0.1298   -0.2560    0.0236   -0.4282    0.1258 
    0.6105   -0.0615   -0.0495    1.0000   -0.2575   -0.1414   -0.1156    0.1331   -0.1223    0.5683    0.3841   -0.0205 
   -0.2231    0.4189   -0.0647   -0.2575    1.0000   -0.3015   -0.1635   -0.1700    0.0544   -0.2151    0.2066    0.1666 
    0.2116   -0.2827    0.2813   -0.1414   -0.3015    1.0000    0.5240   -0.0853    0.0025    0.0472   -0.2940    0.2343 
   -0.0266    0.0008    0.0437   -0.1156   -0.1635    0.5240    1.0000   -0.4951    0.3740    0.2386   -0.4273    0.2910 
    0.1143   -0.2796    0.1298    0.1331   -0.1700   -0.0853   -0.4951    1.0000   -0.8010   -0.1195    0.3950    0.0715 
   -0.1268    0.3076   -0.2560   -0.1223    0.0544    0.0025    0.3740   -0.8010    1.0000   -0.0179   -0.2907   -0.1661 
    0.2354   -0.0554    0.0236    0.5683   -0.2151    0.0472    0.2386   -0.1195   -0.0179    1.0000    0.1855    0.0059 
    0.1002    0.4163   -0.4282    0.3841    0.2066   -0.2940   -0.4273    0.3950   -0.2907    0.1855    1.0000   -0.0415 
    0.1234   -0.0634    0.1258   -0.0205    0.1666    0.2343    0.2910    0.0715   -0.1661    0.0059   -0.0415    1.0000 

P= 
    1.0000    0.0019    0.0917    0.0000    0.0496    0.0629    0.8168    0.3190    0.2685    0.0381    0.3827    0.2817 
    0.0019    1.0000    0.0000    0.5926    0.0001    0.0121    0.9942    0.0132    0.0062    0.6299    0.0002    0.5814 
    0.0917    0.0000    1.0000    0.6669    0.5737    0.0126    0.7041    0.2575    0.0237    0.8377    0.0001    0.2725 
    0.0000    0.5926    0.6669    1.0000    0.0229    0.2167    0.3135    0.2453    0.2861    0.0000    0.0005    0.8583 
    0.0496    0.0001    0.5737    0.0229    1.0000    0.0073    0.1525    0.1368    0.6360    0.0586    0.0696    0.1448 
    0.0629    0.0121    0.0126    0.2167    0.0073    1.0000    0.0000    0.4577    0.9826    0.6815    0.0090    0.0389 
    0.8168    0.9942    0.7041    0.3135    0.1525    0.0000    1.0000    0.0000    0.0007    0.0354    0.0001    0.0098 
    0.3190    0.0132    0.2575    0.2453    0.1368    0.4577    0.0000    1.0000    0.0000    0.2972    0.0003    0.5339 
    0.2685    0.0062    0.0237    0.2861    0.6360    0.9826    0.0007    0.0000    1.0000    0.8765    0.0098    0.1462 
    0.0381    0.6299    0.8377    0.0000    0.0586    0.6815    0.0354    0.2972    0.8765    1.0000    0.1040    0.9589 
    0.3827    0.0002    0.0001    0.0005    0.0696    0.0090    0.0001    0.0003    0.0098    0.1040    1.0000    0.7183 
    0.2817    0.5814    0.2725    0.8583    0.1448    0.0389    0.0098    0.5339    0.1462    0.9589    0.7183    1.0000 
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- Window =12; shift=1 

R = 
    1.0000   -0.3159    0.2947    0.4122    0.1272    0.1993    0.0066   -0.0013   -0.2961    0.1884    0.3200    0.4188 
   -0.3159    1.0000   -0.7807    0.2975    0.8060   -0.7586   -0.2624   -0.2240    0.0036    0.2320    0.2840    0.1669 
    0.2947   -0.7807    1.0000   -0.3883   -0.5084    0.9904    0.5101    0.0054   -0.1337   -0.2487   -0.4667    0.1228 
    0.4122    0.2975   -0.3883    1.0000    0.1107   -0.3651   -0.0788    0.0812   -0.3881    0.6700    0.7567    0.2342 
    0.1272    0.8060   -0.5084    0.1107    1.0000   -0.5645   -0.2670   -0.3143    0.0003    0.0491    0.1604    0.3787 
    0.1993   -0.7586    0.9904   -0.3651   -0.5645    1.0000    0.5467    0.0170   -0.1454   -0.2165   -0.4670    0.0910 
    0.0066   -0.2624    0.5101   -0.0788   -0.2670    0.5467    1.0000   -0.0879   -0.0586    0.3551   -0.2520    0.3595 
   -0.0013   -0.2240    0.0054    0.0812   -0.3143    0.0170   -0.0879    1.0000   -0.1707   -0.0558    0.1683   -0.0590 
   -0.2961    0.0036   -0.1337   -0.3881    0.0003   -0.1454   -0.0586   -0.1707    1.0000   -0.1223   -0.1303   -0.0504 
    0.1884    0.2320   -0.2487    0.6700    0.0491   -0.2165    0.3551   -0.0558   -0.1223    1.0000    0.5183    0.1933 
    0.3200    0.2840   -0.4667    0.7567    0.1604   -0.4670   -0.2520    0.1683   -0.1303    0.5183    1.0000    0.0837 
    0.4188    0.1669    0.1228    0.2342    0.3787    0.0910    0.3595   -0.0590   -0.0504    0.1933    0.0837    1.0000 
 
P = 
    1.0000    0.0069    0.0120    0.0003    0.2872    0.0932    0.9563    0.9914    0.0115    0.1130    0.0061    0.0003 
    0.0069    1.0000    0.0000    0.0112    0.0000    0.0000    0.0260    0.0586    0.9759    0.0499    0.0156    0.1610 
    0.0120    0.0000    1.0000    0.0007    0.0000    0.0000    0.0000    0.9639    0.2628    0.0351    0.0000    0.3040 
    0.0003    0.0112    0.0007    1.0000    0.3547    0.0016    0.5104    0.4980    0.0008    0.0000    0.0000    0.0477 
    0.2872    0.0000    0.0000    0.3547    1.0000    0.0000    0.0234    0.0072    0.9981    0.6821    0.1784    0.0010 
    0.0932    0.0000    0.0000    0.0016    0.0000    1.0000    0.0000    0.8872    0.2230    0.0678    0.0000    0.4469 
    0.9563    0.0260    0.0000    0.5104    0.0234    0.0000    1.0000    0.4630    0.6251    0.0022    0.0328    0.0019 
    0.9914    0.0586    0.9639    0.4980    0.0072    0.8872    0.4630    1.0000    0.1518    0.6414    0.1576    0.6223 
    0.0115    0.9759    0.2628    0.0008    0.9981    0.2230    0.6251    0.1518    1.0000    0.3060    0.2752    0.6742 
    0.1130    0.0499    0.0351    0.0000    0.6821    0.0678    0.0022    0.6414    0.3060    1.0000    0.0000    0.1037 
    0.0061    0.0156    0.0000    0.0000    0.1784    0.0000    0.0328    0.1576    0.2752    0.0000    1.0000    0.4844 
    0.0003    0.1610    0.3040    0.0477    0.0010    0.4469    0.0019    0.6223    0.6742    0.1037    0.4844    1.0000 
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Appendix 2. Principal Component Analysis (PCA) 

Traditionally, principal component analysis is performed on the symmetric Covariance matrix or 

on the symmetric Correlation matrix. These matrices can be calculated from the data matrix. 

The covariance matrix contains scaled sums of squares and cross products. A correlation matrix 

is like a covariance matrix but in which the variables, i.e. the columns, have been standardized. 

We will have to standardize the data if the variances of variables, or if the units of measurement 

of the variables differs considerably. 

In this appendix we report  the loadings i.e. eigenvectors matrix ordered in decreasing order in 

respect to the correspondent eigenvalues and the variance explained for different time window w 

and different shifts sh. 

The columns of loadings are the principal components, the rows are the coordinates of the 

eigenvectors of covariance matrix in the coordinate system: {S, D, T, Sdt, Ddt, Tdt, Sfd, 

Dfd, Tfd, Vs, Vd, Vt} 

 

- Loadings for windows =1; shift =1; 

    0.1801   -0.4014   -0.2349   -0.4308    0.0655   -0.2196   -0.2880   -0.6285    0.1153   -0.1032    0.1062    0.0023 
   -0.3934   -0.1531    0.2379    0.0802   -0.3920   -0.1733   -0.1521    0.1371    0.6040   -0.2497    0.3226    0.0436 
    0.2872    0.0083    0.1344   -0.2054    0.6711    0.2206    0.0899    0.2632    0.4220   -0.0910    0.3051    0.0378 
    0.1018   -0.4453   -0.3041   -0.3593   -0.1610   -0.1850   -0.0466    0.6879   -0.0987    0.1073   -0.1129   -0.0156 
   -0.2924   -0.1836    0.3101   -0.1076    0.1262    0.5012   -0.6616    0.0590   -0.1768    0.1009   -0.1439   -0.0518 
    0.1527   -0.0640    0.2032    0.4514    0.3460   -0.6499   -0.3977    0.1075   -0.0781    0.0744   -0.0624   -0.0133 
    0.2213   -0.4827    0.0824    0.3576   -0.0895    0.2244    0.1905   -0.1379    0.3781    0.5055   -0.2666    0.0098 
   -0.3963   -0.2527    0.1831   -0.1117    0.3116   -0.1412    0.3549   -0.0538    0.0358   -0.3832   -0.5822    0.0093 
    0.2760    0.0306    0.5399   -0.2630   -0.1996   -0.1090    0.1178   -0.0161   -0.0529    0.0168   -0.0135   -0.7023 
    0.2610   -0.4511    0.0570    0.3734   -0.0783    0.2393    0.0953    0.0227   -0.3546   -0.5614    0.2681   -0.0044 
   -0.4144   -0.2761    0.1856   -0.0793    0.1824   -0.1403    0.3181   -0.0775   -0.3328    0.4165    0.5145    0.0476 
    0.2985    0.0421    0.5203   -0.2574   -0.2139   -0.0787    0.0375   -0.0069   -0.1150    0.0149   -0.0860    0.7056 
 

Eigenvalue Cumulative sum of 

 % variances explained 

    3.4124 
    2.2086 
    1.9863 
    1.3426 
    1.1692 
    0.8048 
    0.4502 
    0.2249 
    0.1709 
    0.1215 
    0.1021 
    0.0065 

   28.4363 
   46.8410 
   63.3939 
   74.5818 
   84.3254 
   91.0324 
   94.7836 
   96.6580 
   98.0824 
   99.0951 
   99.9458 
  100.0000   

 

 

 

 



 40 

- Loadings for Windows =2; shift =1 

    0.3465   -0.1773    0.4449   -0.1565    0.0341   -0.4237    0.0363   -0.0616   -0.0458   -0.3012   -0.5810    0.0996 
   -0.4940   -0.2600    0.0490    0.0864    0.3277   -0.0519    0.0439   -0.2625   -0.0862    0.0290   -0.0016    0.6995 
    0.3910    0.3575   -0.0642   -0.3521    0.0001    0.0211   -0.2700    0.3029   -0.1582    0.2942    0.0609    0.5575 
    0.2760   -0.3741    0.4499   -0.0458    0.0779   -0.2021   -0.0253   -0.0678    0.2151    0.2225    0.6563   -0.0266 
   -0.2800   -0.0709   -0.2187   -0.4982    0.3065   -0.2672   -0.4257    0.2080    0.1844   -0.3854    0.1423   -0.1669 
    0.0957    0.4118    0.1222    0.4031    0.3952   -0.2266   -0.1099   -0.0580   -0.5121   -0.2744    0.2686   -0.1056 
   -0.1753    0.4458    0.1907    0.2928    0.2071   -0.2698   -0.0478    0.1500    0.6308    0.2799   -0.1782    0.0003 
    0.3484   -0.1230   -0.4032    0.3847   -0.1046   -0.0798    0.1087    0.1566    0.3560   -0.4822    0.1553    0.3403 
   -0.3465    0.0695    0.3578   -0.0484   -0.2796   -0.0330    0.3793    0.6466   -0.1350   -0.2192    0.1638    0.1022 
    0.1022   -0.2047    0.3050    0.1897    0.3573    0.6713   -0.3116    0.3065    0.0833   -0.1362   -0.1534   -0.0162 
    0.0874   -0.3879   -0.3302    0.1506    0.3631   -0.2649    0.2036    0.4600   -0.2198    0.3980   -0.1594   -0.1518 
    0.1705   0.2179   -0.0370   -0.3694    0.4937   0.2295   0.6583    -0.1173   0.1576   -0.1125   0.0629    -0.0258 
 

eigenvalue Cumulative sum of 
 % variances explained 

    2.5456 
    2.1069 
    1.7169 
    1.2568 
    1.1540 
    0.8827 
    0.6936 
    0.5734 
    0.4304 
    0.3533 
    0.1798 
    0.1067 

   21.2135 
   38.7706 
   53.0778 
   63.5516 
   73.1679 
   80.5238 
   86.3037 
   91.0819 
   94.6689 
   97.6127 
   99.1111 
  100.0000 

 

- Loadings for Window =3; shift =1 

     0.3381   -0.1095    0.4278   -0.1373    0.0907    0.5344   -0.0421   -0.1302   -0.0179    0.2691   -0.5273    0.0922 
   -0.5355   -0.0342    0.2023   -0.0583   -0.2785    0.0521    0.1807   -0.2099   -0.0240   -0.0115    0.0051    0.7141 
    0.4711    0.1396   -0.2427   -0.2784    0.1131   -0.1118   -0.3390    0.2001   -0.1859   -0.2360    0.0220    0.5926 
    0.2152   -0.2627    0.5555   -0.0806    0.0298    0.1348   -0.0382   -0.0045    0.1963   -0.3152    0.6412   -0.0080 
   -0.2994   -0.0256   -0.1895   -0.5566   -0.0658    0.1897   -0.5833   -0.2368    0.1624    0.2121    0.1633   -0.1712 
    0.2124    0.3548   -0.0060    0.2331   -0.5166    0.2463   -0.0919   -0.2448   -0.5142    0.1360    0.2968   -0.0884 
    0.0003    0.4941    0.0785    0.2177   -0.3281    0.1448   -0.2289    0.1653    0.6106   -0.2884   -0.1947    0.0048 
    0.2231   -0.3974   -0.2900    0.3355   -0.2070    0.0616   -0.0557    0.1419    0.3696    0.5352    0.2031    0.2480 
   -0.2777    0.3496    0.2647    0.1042    0.3504    0.1249   -0.1499    0.5723   -0.1517    0.3957    0.2146    0.0754 
    0.1123   -0.0004    0.4578   -0.0741   -0.2741   -0.7230   -0.2576   -0.0249   -0.0095    0.2878   -0.1507   -0.0424 
   -0.1710   -0.4490    0.0099   -0.0447   -0.4362    0.1450   -0.1722    0.5709   -0.2873   -0.2479   -0.1928   -0.1377 
    0.1649    0.2144   -0.0517   -0.5927   -0.3011    0.0134    0.5714    0.2852    0.1421    0.1961    0.1021   -0.0718 
 

eigenvalue Cumulative sum of 
 % variances explained 

    2.5907 
    2.2755 
    1.8957 
    1.2492 
    1.2104 
    0.7672 
    0.6604 
    0.4249 
    0.4061 
    0.2772 
    0.1721 
    0.0705 

   21.5893 
   40.5516 
   56.3489 
   66.7591 
   76.8458 
   83.2390 
   88.7422 
   92.2834 
   95.6678 
   97.9778 
   99.4123 
  100.0000 
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- Loadings for Window =6; shift=1 

0.3277    0.1341    0.3307   -0.0481    0.2342   -0.6310    0.0833   -0.2754   -0.0558    0.4499   -0.0007    0.1471 
   -0.5359    0.0558    0.1779   -0.2073   -0.1693   -0.0620    0.0541   -0.2252   -0.1248   -0.1727   -0.0579    0.7073 
    0.4560   -0.1166   -0.2488    0.0875    0.4084    0.1916    0.1906    0.2006    0.1789   -0.1388    0.0718    0.6103 
    0.1733    0.2900    0.5171    0.0577    0.1746   -0.0649   -0.1514   -0.0470    0.1935   -0.7075   -0.0620   -0.1156 
   -0.3104    0.0394   -0.1944   -0.3352    0.6159    0.0394    0.4066   -0.2353    0.0646   -0.0676   -0.2629   -0.2694 
    0.2864   -0.2990    0.0527   -0.2796   -0.3883   -0.2060    0.5920    0.1461   -0.2682   -0.2980   -0.1142   -0.0938 
    0.0703   -0.4605    0.2435   -0.2749   -0.1762    0.1809   -0.0138   -0.2948    0.6914    0.1357    0.0250   -0.0142 
    0.2191    0.4454   -0.2606   -0.1157   -0.3065    0.0320   -0.0701   -0.0270    0.2316    0.0850   -0.7087    0.0923 
   -0.2651   -0.3886    0.2471    0.2352    0.1725   -0.2316   -0.0768    0.5475    0.1127    0.0880   -0.5014    0.0381 
    0.1429    0.0581    0.5190   -0.0181    0.0810    0.6517    0.1287   -0.0102   -0.3656    0.2851   -0.2079    0.0193 
   -0.1712    0.4688    0.1756   -0.2096   -0.0777    0.0110    0.3442    0.5346    0.3453    0.1995    0.3265   -0.0098 
    0.1270   -0.0755   -0.0255   -0.7514    0.1478   -0.0285   -0.5187    0.2846   -0.1962   -0.0084    0.0363    0.0179 
 

eigenvalue Cumulative sum of 
 % variances explained 

    2.8242 
    2.6929 
    1.9972 
    1.2969 
    1.0064 
    0.7694 
    0.5553 
    0.2996 
    0.2354 
    0.1868 
    0.1291 
    0.0068 

   23.5353 
   45.9762 
   62.6199 
   73.4270 
   81.8141 
   88.2260 
   92.8538 
   95.3502 
   97.3117 
   98.8682 
   99.9437 
  100.0000 

 

- Loadings for Window =12; shift =1 

    0.0081   -0.4542    0.0647    0.4841   -0.3653   -0.0642    0.4118   -0.1318   -0.1607   -0.1820    0.1214   -0.3959 
   -0.4214    0.1498    0.2523   -0.0646    0.3019    0.0134   -0.0898    0.2128    0.2891   -0.2487    0.3693   -0.5529 
    0.4547   -0.1867    0.1095    0.1071   -0.0208   -0.0615   -0.0257    0.2920    0.3268   -0.0423    0.6377    0.3599 
   -0.3021   -0.4294   -0.1693   -0.0653   -0.0145   -0.1267   -0.3365   -0.2904    0.2388   -0.5696   -0.0909    0.2964 
   -0.3343    0.0826    0.4432    0.3128    0.1027    0.0386    0.3783    0.3182    0.0984   -0.1195   -0.3077    0.4606 
    0.4561   -0.1807    0.0857    0.0222    0.0405   -0.0728   -0.1465    0.3044    0.4184   -0.0899   -0.5825   -0.3287 
    0.2274   -0.2659    0.3254   -0.5047    0.2173    0.1252    0.1314    0.1377   -0.5341   -0.3641    0.0000    0.0000 
    0.0405   -0.0902   -0.4918    0.0932    0.3083    0.7302    0.2728    0.0588    0.1365   -0.1221    0.0000   -0.0000 
    0.0119    0.3158    0.1362   -0.2826   -0.7378    0.3873    0.0248    0.0224    0.1838   -0.2690    0.0000    0.0000 
   -0.2068   -0.3848    0.0221   -0.5295   -0.0536   -0.0900    0.4412   -0.0844    0.3776    0.4159   -0.0000    0.0000 
   -0.3251   -0.2978   -0.2714   -0.0231   -0.2698    0.0405   -0.2784    0.6957   -0.2484    0.1839   -0.0000    0.0000 
   -0.0511   -0.3118    0.4972    0.1522    0.0156    0.5104   -0.4234   -0.2447    0.0057    0.3603    0.0000    0.0000 
 
 

Eigenvalue Cumulative sum of 
 % variances explained 

    4.0386 
    2.5374 
    1.6825 
    1.2192 
    0.8815 
    0.8325 
    0.2978 
    0.2513 
    0.1587 
    0.1005 
    0.0000 
    0.0000 

   33.6551 
   54.8002 
   68.8214 
   78.9810 
   86.3269 
   93.2644 
   95.7462 
   97.8404 
   99.1627 
  100.0000 
  100.0000 
  100.0000 
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- Loadings for Window=3; shift =3; 

    0.2487    0.0063    0.4608    0.4155   -0.1256    0.2470   -0.1001    0.1035    0.5573    0.1219   -0.3376    0.1271 
   -0.4657    0.3377   -0.0039    0.0373    0.0714    0.3174    0.1556    0.0193   -0.0351   -0.1015    0.0472    0.7235 
    0.2876   -0.4533   -0.1766    0.2005   -0.0634   -0.1980   -0.3958   -0.2648   -0.2272    0.0098   -0.0354    0.5634 
    0.2268    0.2661    0.4640    0.3451    0.0724    0.1046   -0.1703    0.1264   -0.5301   -0.0866    0.4328   -0.0793 
   -0.2306    0.1288   -0.4498    0.2007   -0.2050    0.2983   -0.6526    0.1766    0.1544   -0.0929    0.1494   -0.2115 
    0.0230   -0.4081    0.2136   -0.3033    0.1437    0.5512   -0.0448   -0.3758    0.1707   -0.2987    0.3232   -0.0691 
   -0.2530   -0.4112    0.2275   -0.2573   -0.0249    0.2520   -0.1638    0.5044   -0.3694    0.2472   -0.3256   -0.0048 
    0.4273    0.1081   -0.0896   -0.4415   -0.0789    0.0184   -0.0397    0.3966    0.2401    0.3276    0.4447    0.2731 
   -0.4489    0.0123    0.3290   -0.0518   -0.0506   -0.2689   -0.2639   -0.3556    0.1349    0.5725    0.2637   -0.0313 
   -0.0354   -0.0188   -0.0188    0.0479    0.9153   -0.1676   -0.2393    0.1888    0.1865   -0.0345   -0.0249    0.0189 
    0.2895    0.3946   -0.1455   -0.2021    0.1914    0.3800   -0.1518   -0.3946   -0.2324    0.3837   -0.3651   -0.0643 
   -0.0171   -0.2990   -0.3219    0.4769    0.1529    0.2943    0.4169    0.0294   -0.0397    0.4742    0.2473   -0.0839 
 

eigenvalue Cumulative sum of 
 % variances explained 

    2.8608 
    2.2642 
    1.6610 
    1.5987 
    1.0800 
    0.9322 
    0.6053 
    0.4041 
    0.3170 
    0.1977 
    0.0744 
    0.0046 

   23.8396 
   42.7078 
   56.5497 
   69.8726 
   78.8724 
   86.6409 
   91.6850 
   95.0526 
   97.6940 
   99.3418 
   99.9616 
  100.0000 

 

- Loadings for Window =6; shift =6 

 
    0.2264   -0.0327    0.2786    0.3265    0.6512   -0.0560   -0.4200    0.1218   -0.1774   -0.2870    0.0871    0.1537 
   -0.4134    0.1728   -0.0313    0.2391   -0.0091   -0.1514    0.2930    0.1477    0.2199   -0.1466    0.3045    0.6692 
    0.3893   -0.2370   -0.2552   -0.0364    0.0185   -0.1551    0.2178   -0.1684   -0.2429    0.0007   -0.5325    0.5320 
    0.1873    0.1630    0.5438    0.3797    0.0082    0.3184    0.5804   -0.1759   -0.0160    0.0344   -0.1245   -0.1104 
   -0.1667    0.2587   -0.4840    0.4700    0.0705   -0.2453    0.1678    0.0893   -0.1451   -0.3043   -0.2637   -0.4070 
    0.0479   -0.5336    0.0887   -0.1629    0.2856   -0.4910    0.4423    0.0424    0.1981   -0.0838    0.2112   -0.2601 
   -0.2363   -0.4891   -0.0053    0.0562   -0.1253    0.4101    0.1183    0.5506   -0.4343   -0.1098   -0.0079    0.0000 
    0.4309    0.0602   -0.0789   -0.1146   -0.1565    0.2193    0.0135    0.3830    0.5545   -0.5034   -0.1046    0.0000 
   -0.4071   -0.0310    0.3103   -0.0410    0.1603   -0.1250   -0.1268    0.2587    0.3361    0.2080   -0.6744   -0.0000 
   -0.0117   -0.2903    0.3254    0.3377   -0.6198   -0.3462   -0.2875   -0.1779   -0.0086   -0.2755   -0.0370   -0.0000 
    0.3554    0.3031    0.1385    0.0336   -0.1959   -0.4110    0.0465    0.5876   -0.2072    0.3928    0.0973    0.0000 
    0.1654   -0.3388   -0.3015    0.5569    0.0217    0.1631   -0.1203    0.0259    0.3854    0.5063    0.0989   -0.0000 
 

Eigenvalue Cumulative sum of 
 % variances explained 

   4.7794 
    2.5936 
    1.6013 
    1.2937 
    1.0577 
    0.3081 
    0.2058 
    0.0808 
    0.0672 
    0.0118 
    0.0006 
    0.0000 

   39.8285 
   61.4415 
   74.7859 
   85.5670 
   94.3811 
   96.9487 
   98.6635 
   99.3370 
   99.8965 
   99.9949 
  100.0000 
  100.0000 
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- Loadings for Window =12; shift =12; 

   -0.1410    0.4800   -0.1966   -0.3271   -0.1978   -0.0332   -0.0019   -0.3448   -0.1609    0.1956    0.0587   -0.6143 
   -0.3313   -0.2580   -0.2364    0.2799    0.2674    0.0064   -0.5004    0.0050    0.2922   -0.2630    0.1641   -0.4313 
    0.4232    0.0318   -0.1780   -0.0185    0.2323    0.8334   -0.1036    0.0246   -0.1261    0.0549    0.0437   -0.0841 
   -0.3716    0.1997   -0.0981    0.2317    0.5407    0.0870    0.4250   -0.0158    0.0313    0.1288   -0.5088   -0.0377 
   -0.2716    0.0358   -0.4490   -0.2084   -0.3464    0.2782    0.1390   -0.1241    0.5716   -0.0527   -0.0002    0.3441 
    0.4171   -0.0333   -0.1628    0.0833    0.3694   -0.3055    0.0309   -0.4702    0.3371    0.3931    0.2446    0.1077 
    0.1830   -0.4426   -0.3149   -0.0252   -0.0540   -0.0902    0.6548    0.0944   -0.0825   -0.2538    0.1697   -0.3494 
    0.2134    0.4305   -0.2891    0.1143    0.0006   -0.2002   -0.0168    0.7366    0.2122    0.1628    0.1103   -0.0770 
    0.0294   -0.1328    0.3710   -0.7080    0.3149    0.0082    0.0179    0.2094    0.3952   -0.0121   -0.0878   -0.1874 
   -0.2403   -0.4841   -0.0928   -0.0349   -0.1517    0.0722   -0.0783    0.2017   -0.1214    0.7760   -0.0392   -0.0678 
   -0.3966    0.1555    0.2201    0.0086    0.2168    0.1652    0.2431    0.0691   -0.0927    0.0713    0.7736    0.1401 
   -0.1028   -0.0480   -0.5085   -0.4404    0.3385   -0.2125   -0.2083    0.0542   -0.4474   -0.1317    0.0159    0.3328 
 

Eigenvalue Cumulative sum of 
 % variances explained 

    4.9765 
    2.8991 
    2.6572 
    1.0775 
    0.3897 
         0 
         0 
         0 
         0 
         0 
         0 
         0 

   41.4707 
   65.6301 
   87.7734 
   96.7527 
  100.0000 
  100.0000 
  100.0000 
  100.0000 
  100.0000 
  100.0000 
  100.0000 
  100.0000 
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